Solution:
// Header Files #include<stdio.h> #include<conio.h> #include<BIOS.H> #inlcude<DOS.H> void interrupt (*oldTimer)(*void); // To store current Timer vector void interrupt newTimer(); //New Timer Function char far *scr= (char far *)0xB8000000; //Screen segment int in, t=0; void main() { clrscr(); oldTimer=getvect(8); setvect(8,newTimer); getch(); } void interrupt newTimer(); { *(scr+t)=0x2A; t++; if(t>=126) { for(i=0;i<4000;i+=2) { *(scr+i)=0x20; // Blank screen *(scr+i+1)=0x07; } t=0; } (*oldTimer)(); } }MTH603 Grand Quiz Solution and Discussion

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
Differences methods are iterative methods. yes or no
 Which of the following is not an iterative method? Explanation: Jacobi’s method, Gauss Seidal method and Relaxation method are the iterative methods and Gauss Jordan method is not as it does not involves repetition of a particular set of steps followed by some sequence which is known as iteration.

Differences methods are iterative methods. yes or no

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
Power method is applicable if the eigen vectors corresponding to eigen values are linearly _______.
The Jacobi’s method is a method of solving a matrix equation on a matrix that has no zeros along its main diagonal. Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent.

Power method is applicable if the eigen vectors corresponding to eigen values are linearly _______.

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
Two matrices with the same characteristic polynomial need not be similar.
Two similar matrices have the same characteristic polynomial. The converse however is not true in general: two matrices with the same characteristic polynomial need not be similar. The matrix A and its transpose have the same characteristic polynomial. … In this case A is similar to a matrix in Jordan normal form.

Two matrices with the same characteristic polynomial need not be similar.

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix , the eigenvalues of A are the diagonal entries of A.
The eigenvalues of B are 1,4,6 since B is an upper triangular matrix and eigenvalues of an upper triangular matrix are diagonal entries. We claim that the eigenvalues of A and B are the same.

If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix , the eigenvalues of A are the diagonal entries of A.

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities).
Since similar matrices A and B have the same characteristic polynomial, they also have the same eigenvalues. If B = PAP−1 and v = 0 is an eigenvector of A (say Av = λv) then B(Pv) = PAP−1(Pv) = PA(P−1P)v = PAv = λPv. Thus Pv (which is nonzero since P is invertible) is an eigenvector for B with eigenvalue λ.
The matrix B has the same A as an eigenvalue. M−1x is the eigenvector. If two matrices are similar, they have the same eigenvalues and the same number of independent eigenvectors (but probably not the same eigenvectors).

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities).
Since similar matrices A and B have the same characteristic polynomial, they also have the same eigenvalues. If B = PAP−1 and v = 0 is an eigenvector of A (say Av = λv) then B(Pv) = PAP−1(Pv) = PA(P−1P)v = PAv = λPv. Thus Pv (which is nonzero since P is invertible) is an eigenvector for B with eigenvalue λ.

If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities).

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
The Jacobi’s method is a method of solving a matrix equation on a matrix that has ____ zeros along its main diagonal.
The Jacobi’s method is a method of solving a matrix equation on a matrix that has no zeros along its main diagonal. Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent.

The Jacobi’s method is a method of solving a matrix equation on a matrix that has ____ zeros along its main diagonal.

@zaasmi said in MTH603 Grand Quiz Solution and Discussion:
The GaussSeidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A.
Explanation: GaussSeidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices because only in this case convergence is possible. … This is the modification made to Jacobi’s method, which is now called as Gaussseidal method.

The GaussSeidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A.

@zaasmi
If λk is the eigenvalue that is closest to the number q, then µk is the dominant eigenvalue for B and so it can be determined using the power method. Moreover, to find the eigenvalue of A that is smallest in magnitude is equivalent to find the dominant eigenvalue of the matrix B = A−1.