In strong components algorithm, first of all DFS is run for computing finish times of vertices. CS502

- [d[u], f[u]]⊆[d[v], f[v]]
- [d[u], f[u]]⊇[d[v], f[v]]
**unrelated** Page No.129
- Disjoint

The ancestor and descendent relation can be nicely inferred by the parenthesis lemma. u is a descendent of v if and only if [d[u], f[u]]⊆[d[v], f[v]]. u is a ancestor of v if and only if[d[u], f[u]]⊇[d[v], f[v]]. u is unrelated to v if and only if[d[u], f[u]]and[d[v], f[v]]are disjoint. The is shown in Figure 8.26. The width of the rectangle associated with a vertex is equal to the time the vertex was discovered till the time the vertex was completely processed (colored black). Imagine an opening parenthesis ‘(’ at the start of the rectangle and and closing parenthesis ‘)’ at the end of the rectangle. The rectangle (parentheses) for vertex ‘b’ is completely enclosed by the rectangle for ‘a’. Rectangle for ‘c’ is completely enclosed by vertex ‘b’ rectangle.