The large energy cost of memory fetches limits the overallefficiency of applications no matter how efficient the accelerators are on the chip. As a result the most importantoptimization must be done at the algorithm level, to reduce offchip memory accesses, to createDark Memory. The algorithmsmust first be (re)written for both locality and parallelism beforeyou tailor the hardware to accelerate them.Using Pareto curves in theenergy/opandmm2/(op/s)spaceallows one to quickly evaluate different accelerators, memorysystems, and even algorithms to understand the tradeoffsbetween performance, power and die area. This analysis isa powerful way to optimize chips in the Dark Silicon era.
MTH603 Quiz 3 Solution and Discussion

Please share Quiz

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
Euler’s Method numerically computes the approximate ________ of a function.
Euler’s method is a numerical tool for approximating values for solutions of differential equations.

Euler’s Method numerically computes the approximate ________ of a function.

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
Given that dydt=t+y√dydt=t+y with the initial condition y0=1att0=0y0=1att0=0 find the 2nd term in Taylor series when t=1, y/ =0.2, and h=0.1.

Given that dydt=t+y√dydt=t+y with the initial condition y0=1att0=0y0=1att0=0 find the 2nd term in Taylor series when t=1, y/ =0.2, and h=0.1.

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
Given that dydt=y−ty+tdydt=y−ty+t with the initial condition y=1,t=0y=1,t=0 find the 3rd term in Taylor series when t=0.3 and y//= 0.2.

Given that dydt=y−ty+tdydt=y−ty+t with the initial condition y=1,t=0y=1,t=0 find the 3rd term in Taylor series when t=0.3 and y//= 0.2.

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy.
R.K Methods do not require prior calculation of higher derivatives of y(x) ,as the Taylor method does. Since the differential equations using in applications are often complicated, the calculation of derivatives may be difficult

In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy.

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
Multistep method does not improves the accuracy of the answer at each step.
Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it. Consequently, multistep methods refer to several previous points and derivative values.

Multistep method does not improves the accuracy of the answer at each step.

If yn+1=yn+16(K1+2K2+2k3+k4)yn+1=yn+16(K1+2K2+2k3+k4) then, K2K2 is:

Given that dydt=t+y√dydt=t+y with the initial condition y0=1att0=0y0=1att0=0 Using Modified Euler’s method, for the range 0⩽t⩽0.60⩽t⩽0.6, h = 0.1 is

@zaasmi said in MTH603 Quiz 3 Solution and Discussion:
Euler’s method is only useful for a few steps and small step sizes; however Euler’s method together with Richardson extrapolation may be used to increase the ____________.
Order accuracy is the percentage of all ecommerce orders that are fulfilled and shipped to their final destination without error, such as a mispick of an item or incorrect unit quantity. Order accuracy is an important metric to track because it highly impacts customer satisfaction.

Euler’s method is only useful for a few steps and small step sizes; however Euler’s method together with Richardson extrapolation may be used to increase the ____________.

Given that dydt=y−ty+tdydt=y−ty+t with the initial condition y=1.01 at t=0.01. Using Euler’s method, y at t= 0.04, h=0.05, the value of y(0.05) is