1|

CS 704 Final Term Papers Solutions by:
| mran Ullah Gondal (ms150200602)

Long Questions:

Q.1.Find the die yield for a processor chip with the following manufacturing cost factors: die size = 380 mm?,
estimated defect rate = 0.75 per cm?, a = 4 (5)

Solutions:

Dieyield isthe fraction or percentage of good dies on awafer number
* Wafer yield accounts for completely bad wafers so need not be tested

Wadfer yield corresponds to on defect density by O which depends on

number of masking levels
e Good egimate for CMOS is 4.0 and

+ Dieyield = Wafer yield x (1 + defects per unit area x die area) / o) —
e Example: Theyield of adie, 0.7cm on aside, with defect density of O.6/cm2
= (1+[0.6x0.47]/4.0) * = 0.75

Dieyield = Wafer yield x (1 + defects per unit areax diearea/ a))—a
Example: Theyield of adie, 0.7cm on aside, with defect density of O.75/cm2
&)1
- -4 _ -4
= (1+4[0.75x 380]/4.0) "= (1+285/4)

(71547 Y (715)* = 000349

Q.2. If computer A runs a programs in 5seconds and computer B runs the same program in 10 seconds, how much

slower is B than A? RR=3 (5)
Q.4. Briefly define the following terms: (10)
Pipelining:

A technigue used in advanced microprocessorswhere the microprocessor begins executing a
second ingtruction before the first has been completed. That is, several instructions are in the
pipeline simultaneoudly, each at a different processing stage.

The pipeline is divided into segments and each segment can execute its operation concurrently with the other
segments. When a segment completes an operation, it passes the result to the next segment in the pipeline and
fetches the next operation from the preceding segment. The final results of each instruction emerge at the end of
the pipelinein rapid succession.

Instruction Cycle:

An instruction cycle (sometimes called fetch-and-execute cycle, fetch-decode-execute cycle, or FDX) is the basic
operation cycle of a computer. It is the process by which a computer retrieves a program instruction from its
memory, determines what actions the instruction requires, and carries out those actions.

Finite State Machine: A finite-state machine (FSM) or finite-state automaton (plural: automata), or ssimply a state
machine, is a mathematical model of computation used to design both computer programs and sequential logic
circuits. It is conceived as an abstract machine that can be in one of a finite number of

Branch predication:

In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-
then-else structure) will go before this is known for sure. The purpose of the branch predictor is to improve the
flow in the instruction pipeline.

2 |

Dynamic Scheduling: Dynamic priority scheduling is a type of scheduling agorithm in which the priorities are
calculated during the execution of the system. The goal of dynamic priority scheduling is to adapt to dynamically
changing progress and form an optimal configuration in self-sustained manner.

A static schedule is some kind of list containing the order of the processes and the durations in which they are
schedule

Q.6. How the operands and oper ations for media and signal processing differ from the normal integer
operands and oper ation? Discuss (20

Solution:

Operands:

Vertex — A common 3D data type dealt in graphics applications — four components: (x, y, z) and w=color or
hidden surfaces — vertex values are usually 32-bit floating-point values — Three vertices specify a graphics
primitive such as atriangle * Pixel — Typically 32 bits, consisting of four 8-bit channels ¢ R (red), G (green), B
(blue), and A (attribute: eg. transparency) « DSPs add fixed point — fractions between -1 and +1 (divide by 2n-1) «
Blocked floating point — a block of variables with common exponent — accumulators, registers that are wider to
guard against round-off error to aid accuracy in fixed-point arithmetic

Operation: Data for multimedia operations is often narrower than the 64-bit data word — normally in single
precision, not double precision « Single-instruction multiple-data (SIMD) or vector instructions— A partitioned
add operation on 16-bit data with a 64-bit ALU would perform four 16-bit adds in asingle clock cycle « Hardware
cost: prevent carries between the four 16-bit partitions of the ALU — Two 32-bit floating-point operations (paired
single operations) * The two partitions must be insulated to prevent operations on one half from affecting the other
Instruction Cycle:

An instruction cycle (sometimes called fetch-and-execute cycle, fetch-decode-execute cycle, or FDX) isthe basic
operation cycle of acomputer. It isthe process by which a computer retrieves a program instruction from its
memory, determines what actions the instruction requires, and carries out those actions.

Finite State Machine: A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a state
machine, is a mathematical model of computation used to design both computer programs and sequential logic
circuits. It is conceived as an abstract machine that can be in one of a finite number of

Q. 7. Consider a branch-target buffer that has penalties of 0,2 and 2 clock cyclesfor correct conditional
branch predictionsin correct prediction and a buffer miss, respectively. Consider a brand-target buffer
design that distinguishes conditional and unconditional branches storing the target addressesfor a
conditional branch and thetarget instructionsfor an unconditional branch. (15)

Q.8. (a) Comparethelnterruptsand Traps. Also differentiate the hardware and softwar e interrupts by
providing suitable examples. (20)

A trap isan exception in auser process. It's caused by division by zero or invalid memory access. It's also the
usual way to invoke a kernel routine (a system call) because those run with a higher priority than user code.
Handling is synchronous (so the user code is suspended and continues afterwards). In a sense they are "active" -
most of the time, the code expects the trap to happen and relies on this fact.

Aninterrupt is something generated by the hardware (devices like the hard disk, graphics card, 1/O ports, etc).
These are asynchronous (i.e. they don't happen at predictable places in the user code) or "passive' since the
interrupt handler has to wait for them to happen eventually.

You can also see atrap as akind of CPU-internal interrupt since the handler for trap handler looks like an interrupt
handler (registers and stack pointers are saved, there is a context switch, execution can resume in some cases
where it left off).

b)How FSM control design approach differs from the Micro program controller? Give the Micro program
controller to handle branch and jump instructions. (5)

Organization refers to how the features of a computer are implemented; i.e., control signal generation as FSM or
microprogramming, memory technology-SRAM, DRAM etc, hardware or software based realization of operation-
multiplication by hardware or algorithmically. Moreover, the organization of same architecture may differ
between different versions; i.e., different versions of Intel x86 family may have different organizations

3 |

Finite State Machine: A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a state
machine, is a mathematical model of computation used to design both computer programs and sequential logic
circuits. It is conceived as an abstract machine that can be in one of afinite number of

M icroprogramming
« Specialize state-diagrams easily captured by micro sequencer
simple increment & —branchl fields

datapath control fields
« Control design reduces to Microprogramming

« Microprogramming is a fundamental concept
implement an instruction set by building a very simple processor and interpreting theinstructions

essential for very complex instructions and when few register transfers are possible
overkill when | SA matches datapath 1-1

Q.9 Comparing perfor mance of two designs: theratio, n = Execution time Y / Execution time X

determines how much lower execution time machine Y takes as compared to X ; as performance is inverse of
execution time, i.e.,
n = Performance X / Performance Y

Concept of Local Decoding:
The local decoding concept is where instead of asking the Main Control to generates the
AL Uctr signals directly ; the main control will generate a set of signals called ALUop.
For al | and J type instructions, ALUop will tell the ALU Control exactly what the ALU needs to do (Add,
Subtract, ...) .
2Bit Branch Pridction:
2 hits are used to encode 4-states in the system (counter) Say:
States 00 and 01 for Predict Not-Taken
States 10 and 11 for Predict Taken
In a saturating counter implementation:
2-bit counter saturates at:
- 00 (Predict Taken) or
- 11 (Predict Not taken)
The counter isincremented when a branch is taken and decremented when it is not taken; e.g.,
- 00 to 01 for Taken when predicted not taken
-10 to 11 for Taken when predicted taken

Q. 11:The 16-bit Zilog Z8001 has the following general instruction for mat:
1514131211109876543210

Mode Opcode w/b Operand2 Operandl

The mode field specifies how to locate the operands from the operand fields. The w/b
filed is used in certain instructions to specify whether the operands are byte or 16-bit
words. The operand 1 field may (depending on the mode field contents) specify one of
16 general -purpose registers. The operand 2 field may specify any general-purpose
registers except register 0. When the operand 2 field is all zeros, each of the original
opcodes takes on a new meaning.

(a) How many opcodes are provided on the Z80017?

Solution:

Let us analyze the problem a bit:

i. The Opcode field of the instruction has five bits available i.e. from bit 9 to 13. Hence this amounts to atotal of
25

ii. As stated in the question that when operand 2 field is al zeros, each of original Opcodes takes on new meaning.
This means 32 additional Opcodes if the value of operand 2 isall zero.

iii. Mode field consists of two bytes hence 22 possible. Theoretically speaking for each combination of mode field
there is awhole class of Opcodes available.

4 |

iv. w/b field consists of one hit so only two possible values exist. Hence in this case also for each possible value
of w/b field, thereisawhole class of Opcodes available.

= 32 Opcodes.

= 4 different modes are Hence there comes a total of (32 + 32)*4*2 = 512 possible Opcodes. These Opcodes
result from different combinations of mode field, w/b field and operand 2 field.

(b) Suggest an efficient way to provided more opcodes and indicate the trade-off invol ved.

Solution:

In order to provide room for additional Opcodes, we must sacrifice some functionality of the system. We can“t
reduce the field size of mode field as it will severely reduce the functionality of the system and the total Opcodes
will also remain the samei.e. (64 + 64)

*2 * 2 =512, Also the w/b field can“t be reduced further asit is already 1 bit of size. We also can“t reduce the
size of operand fields because they have to access sixteen general purpose registers that is possible only through 4
bit value. Hence some other strategy must be considered.

As we have seen that operand 2 can™t access general purpose register 0 thisis because \if it hasto access register 0
it will place its address as 0000 but this all zero code actually changes the meaning of original Opcodes. We can
apply the same technique to operand 1 also. By making it not to use general purpose register 15 or R15 which is
addressed as 1111 we can assign new meaningsto all original Opcodes.

Hence by making the operand 1 field not use R15 and saying that if this field contains all 1s then all original
Opcodes will have different meanings we can increase the number of Opcodesto (32 + 32 + 32)*4*2 = 768. So
we have increased the number of Opcodesby 768 — 512 by 256 after sacrificing R15 from operand 1 field.

Q.12. A computer architect is designing a hardware datapath implementation and the architect has
determined following circuit element delays.

Instruction Memory 150 ps
Decode 70 ps

Register Fetch 60 ps

ALU 150 ps

Data Memory 200 ps
Register Write Back 60 ps

(@) What isthe length of a clock cyclefor a single cycle datapath implementation?

Solution:

Time(lw) = Time(IF) + Time(ID+Reg.File) + Time(ALU) + Time(MemRead)
Time(lw) = 150 + (70+60) + 200 + 60

Time(lw) = 690ps

(b) What would be the frequency of a processor, corresponding to single datapath implementation?

Solution:
As we know Frequency =The value of clock cycle for single cycleis 1.

It means that frequency of processor corresponding to single cycle datapath is 1. Frequency can be defined as
Frequency = 1/clock rate+ Time(Reg.FileWrite)1GHz

. where c is the maximum clock cycle.
=1/690* 10"-12*10"9 =1/690* 10" -3=1000/690= 1.44 9GHz=1.45GHz

(c) What would be the length of fastest clock cycle for a 5-stage pipeline datapath?
What would be the corresponding processor frequency?

Solution:
Fastest clock cycleisthat whose latency is minimum i.e 60 ps. but when we calculate
the frequency, we have to consider the slowest cycle length in multi-cycle datapath that

5 |

5200 ps.

So, Frequency = 1200 ps

1-129-3*10 *10 =1/200* 10 =1000/200=5 GHz

(d) How much faster is the 5-stage pipelined datapath compared to the single cycle datapath implementation?

Single cycle execution time= 690 ps
Execution time for multi cycle = 200ps
S0 690/200ps=3.45 times faster

It means that 5-stage pipelined datapath is 3.45 time faster than single cycle datapath.
If we analyze this according to frequency point of view then 5GHz/1.45GHz=3.45 times faster

Q.13. What is the impact of increasing the size of branch-prediction buffer on two branches in a program?
Answer:
A single predictor predicting a single branch is generally more accurate than is that same predictor
serving more than one instructions; and It isless likely that two branches in a program share a single predictor
Therefore, increasing the size of predictor buffer does not have significant effect on two branches in a
program

Q.14. Consider the following mathematical expressions:
W=B<<3

X=7B+B+C+D

For each expression, write an assembly language code:

(@) For Reg-Reg architecture
(b) For Reg-Mem architecture

Solution:
W=B<<3
Reg-Reg Reg-Mem
LOAD R2,B

Shi [R2], 3
STORE R2, W

shi [B], 3

STORE B, W

OR

Shl[R2], 3
STORE R3,W
X=7mB+B+C+D
Reg-Reg Reg-Mem
LOAD R2,B
LOADRL,C
LOAD R3,D
ADD R4, R3, R1
ADD R5, R4, R2
MUL R2, R2, 7
ADD R4, R5,R2
STORE R4, X

Q.15. Consider a code:
i. Normalize the loop such that start index at 1 and increment it by 1 on every
ii. Write the normalized version of the loop then use GCD test to seeif thereis

For (i=2;i<100;i+=2)

A[i] = g50 * i+1]iteration dependence.

Solution:

i. By normalize the loop, it leads to amodified ¢ code sa shown below;

ii. The GCD test shows the potential for dependences written an array indexed

for (i = 1; i < 50; i++)
{

6
A[2*i] =a[(100 * i) + 1] ;multiple constant by 2
}

by the function, Ai + b and ci + d only, If the condition (d-b) mod GCD(c, @) =0 is satisfied. Now, applying GCD
test, in that case we will get, a=2, b=0, c=100 that allows us to determine dependence in loop. Thus, GCD will be,
GCD(2, 100) = 2 and d-b=1. Here, as 1 is factor of 2. Thus, GCD test indicates that there is dependence in the
code. In reality, there is no dependence in the code. Since the loop lead it value from a[101], a[201]....a[5001] and
again these values to a[2], g4].....a[100].

Q.16. Which approaches increase the amount of ILP?
Solution:

Loop unrolling, software pipelining, trace scheduling and superblocks approaches increase the amount of ILP,
which can be exploited by a processor issuing more than one instruction on every clock cycle.

Q.17. Write down thereasonsfor which recurrence detection isimportant?

Solution:

Recurrence detection is important for two reasons:

1. Some architecture have special support for executing recurrences

2. Some recurrence can be the source of a reasonable amount of parallelism

Q.18. Find whether dependence exist in the following loop.

For (i=1;i<100;i=i+1)

{
X[2*i+3]=x[2*i]* 5.0
}

Solution:

Herein X[2* i + 3] suchthat a=2 and b =3 and in x[2 *i] suchthatc=2and d =0
Thus GCD(a, ¢) =2 and d-b=-3

Here, as 2 does not divide -3 so no dependenceis possible

Q.19.D€fine affine index?

Solution:

An affineindex is defined as follows;

An array index is affine if it can be written in the form of an expression. Here, a and b are constant, and i is the
loop index variable. E.g. in the loop

For(i=1;i<100;i=i+1)

{

X[2*i+3]=x[2*i]*5.0;

}

Here, the index value X[2 * i + 3lisaffinewitha=2andb=3

Q.20.How compiler finds dependences and its assumption?

Solution:

The compiler detects the dependence using dependence analysis algorithm and this algorithm works on
assumptions that:

- Array indices are affine

- There exist GCD of two affine indices

Q.21.Find the dependencesin case of loop level parallelism(LLP)

Solution:

7|

Here, two dependences occur. First, there exist dependence between the two uses of x[i] within the same iteration,
so thisisloop-level dependency but not loop carried.

Second, dependency occurs between the successive uses of i in different iterations which is loop-carried.
Moreover, there exist induction variable X][i]. therefore, dependence can be identified through compiler analysis
near source level, and can be eliminated by loop unrolling.

for (i=1000;i >0;i=i-1)

X[i] = X[i] +s;

Q.22.We have a program core consisting of five conditional branches. The program core will be executed
thousands of times. Below are the outcomes of each branch for one execution of the program core (T for
taken, N for not taken). (20).

Branch 1: T-T-T

Branch 2: N-N-N-N

Branch 3: T-N-T-N-T-N

Branch 4: T-T-T-N-T

Branch 5: T-T-N-T-T-N-T

Assume the behavior of each branch remains the same for each program core execution. For dynamic schemes,
assume each branch has its own prediction buffer andeach buffer initialized to the same state before each
execution. List the predictions for the following branch prediction schemes:

And also write down the prediction accuracies for each branch prediction scheme.

a) Always taken

b) Always not taken

) 1-bit predictor, initlalized to predict taken

d) 2-bit predictor, initialized to weakly predict taken
Solution:

Prediction accuracy = 100% * Correct Predictions / Total Branches
a) Branch 1: prediction: T-T-T, right = 3, wrong = 0
Branch 2: prediction: T-T-T-T, right = 0, wrong = 4
Branch 3: prediction: T-T-T-T-T-T, right = 3, wrong = 3
Branch 4: prediction: T-T-T-T-T, right = 4, wrong = 1
Branch 5: prediction: T-T-T-T-T-T-T, right = 5, wrong - 2
Total right = 15, Total wrong = 10, Accuracy = 100% * 15/25 = 60%

b) Branch 1: prediction: N-N-N, right = 0, wrong = 3
Branch 2: prediction: N-N-N-N, right - 4, wrong = 0
Branch 3: prediction: N-N-N-N-N-N, right - 3, wrong - 3
Branch 4: prediction: N-N-N-N-N, right - 1, wrong - 4
Branch 5: prediction: N-N-N-N-N-N-N, right = 2, wrong = 5
Total right = 10, Total wrong = 15, Accuracy = 100% * 10/25 = 40%

¢} Branch 1: prediction: T-T-T, right = 3, wrong = 0
Branch 2: prediction: T-N-N-N, right = 3, wrong = 1
Branch 3: prediction: T-T-N-T-N-T, right = 1, wrong = 5
Branch 4: prediction: T-T-T-T-N, right = 3, wrong = 2
Branch 5; prediction: T-T-T-N-T-T-N, right = 3, wrong - 4
Total right - 13, Total wrong - 12, Accuracy = 100% * 13/25 - 52%

d) Branch 1: prediction: T-T-T, right = 3, wrong = 0
Branch 2: prediction: T-N-N-N, right = 3, wrong = 1
Branch 3: prediction: T-T-T-T-T-T, right = 3, wrong = 3
Branch 4: prediction: T-T-T-T-T, right = 4, wrong = 1
Branch 5: prediction: T-T-T-T-T-T-T, right = 5, wrong = 2
Total right = 18, Total wrong = 7, Accuracy = 1009 * 18/25 = 72%

Q.22. What isdynamic Scheduling:

Dynamic Scheduling

« Hardware will detect and preserve dependencies (within alimited window of the instruction stream)

» Hardware will check for resource availability

* Independent instructions will be issued to the correct functional units TAG. Each tag identifies uniquely either
™ one of the 5 reservation stations ™ one of the 6 load buffers

« Indicates the “producer” of an operand that is not available from the registers

* A zero tag indicates that the operand isimmediately available.

Q.24. What istheimpact of increasing the size of branch-prediction buffer on two branchesin a program?
Answer:

A single predictor predicting asingle branch is generally more accurate than is that same predictor
serving more than one instructions; and It islesslikely that two branchesin a program share a single predictor,
Therefore, increasing the size of predictor buffer does not have significant effect on two branchesin a program

Q.25 describein detail the classification of 1/0 inter connects based on the communication
distance,bandwidth latency and reliability.

Ans; Interconnect Trends

« The 1/O interconnect is the glue that interfaces computer system components

« 1/0 interconnects are facilitated using High speed hardware interfaces and logical protocols

« Based on the desired communication distance, bandwidth, latency and reliability, interconnects are classified as
used:

« Backplanes, channels, Networks

Network Channcl Backplane

Distance =TI 10 - 1K m | m

Bandwidth L0 - 100 Mbs 40 - L1000 31320 - 1000+ M

Latency high (Zms) medium lorwe {<21%)

Reliahility Tow medium high
lxlensive CRE O Byte Parily Byte Parity
MEssAgs-nased FIEnn-Mmapped
aATOW pathways WaldE JETTIWIYS
dlstributed cetralized

Q.26: Suppose we have a processor with base CPI 1.0, assuming all reference hit in the primary (level-1)
cache and the clock rate 500 mhz. assume a main memory access time of 20 ns.including all miss handling .
suppose the missrate per instruction at the primary cacheis5%.

How much faster will the machine be if we add a second level cache that has a 20 ns accesstime for either a
hit or missand islarge enough to reduce the missrateto main memory to 2 %.

Answer.
Assume a computer has CPI=1.0 when all memory accesses are hit; the only data accesses are |oad/store access;
and these are 50% of the total instructions

« If the miss rate is 2% and miss penalty is 25 clock cycles, how much faster the computer will be if all
instructionsare HIT

« Execution Time for all Hit = IC x 1.0 x cycle time
» CPU Execution time with real cache = CPU Execution time + Memory Stall time

* Memory Stall Cycles =

IC x (Instruction access + data access) per instruction x miss rate x miss penalty
IC (1+ 0.5) x 0.02 x 25

ICx0.75

« CPU Execution time (with cache) =

=(ICx 1.0+ 1Cx0.75) x clock time

=1.75x IC x Cycle time Computer with no cache missesis 1.75 times faster

Q.27: Let usassume a computer has a 64 bytes cache block . an L2 cachethat takes 7 clock cycle to get the
critical 8 bytes, and then | clock cycle per 8 bytes +1 extra clock cycle to fetch the rast of the vlock without
critical word first its 8 bytes clock for the first 8 bytes and the 1 clock per 8 bytes for the rest of the
block.calculate the aver age penalty for critical word first assuming that there will be no other accessto the
rest of the block. Comparetime with or without critical wordsfirst.

« An L2 cache takes 11 clock cycles to get first 8-byte (critical word) and then 2 clock cycles per 8- byte word to
get the rest of the block (and 2 issues per cycle)

1. With critical word first (assuming no other access to the rest of the block)

2. Without critical word first (assuming following instructions read data sequentially 8-byte words at atime from
the rest of the block; i.e., block load is required in this case)

Solution:

1. With Critical word first:

Average miss penalty

= Miss Penalty of critical word + Miss penalty of the remaining words of the block
=11x1+(81)x2=11+ 14=25clock cycles

2. Without critical word first (it requires block load)

= [Miss Penalty of first word + miss penalty of the remaining words of the block]
+ clock cyclesto issue the load

=[11x1+(8-1)x2]+8/4=25+4=29 clock cycles

2 issues/cycle so 4cycles for 8 issues

» Merit: The merit of this technique is that it doesn‘t require extra hardware

« Drawback: This technique is generally useful only in large blocks, therefore the programs exhibiting spatial
locality may face a problem is accessing the data or instruction from the memory, as the next missisto the
remainder of the block

Q.28. Therunning program pattern is 0x0 0x8 0x10 0x18 0x20 0x28
(a) If you directed mapped cache size 1KB and block size of 8 bytes (2 words)how many set:
(b) With the same cache and block size what is miss rate of the directed mapped.
(c) On which would decrease miss rate the most
(i) Increasing the degree of associative by 2.
(i) Increasing the block size to 16 bytes.
Solution:
(a) Increasing block size will increase the cache’s ability to take advantage of spatial locality. Thiswill reduce the
miss rate for applications with spatial locality. However, it also decreases the number of locations to map an
address, possibly increasing conflict misses. Also, the miss penalty (the amount of time it takes to fetch the cache
block from memory) increases.

(b) Increasing the associativity increases the amount of necessary hardware but in most cases decreases the miss
rate. Associativities above 8 usually show only incremental decreasesin missrate

Q.29. 1/0 Performance Parameters. 10 Marks Lecture # 38

I/O Performance Parameters

« Diversity: Which 1/O device can connect to the CPU

« Capacity: How many I/O devices can connect to the CPU

« Latency: Overall response time to complete a task

 Bandwidth: Number of task completed in specified time - throughput

 The parameters diversity that refers to which 1/0 device and capacity means how many 1/O devices can connect
to the CPU are the I/O performance measures having no counterpart in CPU performance metrics.

« In addition, the latency (response time) and bandwidth (throughput) also apply to the I/O system.

« An I/O system is said to be in equilibrium state when the rate at which the 1/0 requests from CPU arriving, at the

input of 1/0 queue (buffer) equals the rate at which the requests departs the queue after being fulfilled by the 110
device.

10 |

Q.30 Let us consider 32KB unified cache with misses per 1000 instruction equals 43.3 and instruction/data
split caches each of 16K B with instruction cache misses per 1000 as 3.82 and data cache as 40.9. 15 Marks
Lecture# 27 and 29 Cache Perfor mance a). Find Average memory access time? b)

Solution: Miss Rate = (Misses/1000) / (Accesses/ ingt.)
Miss Rate 16KB Inst = (3.82/1000) /1.0 = 0.0038

Miss Rate 16KB data = (40.9/1000) /0.36 = 0.114

As about 74% of the memory access are instructions therefore overall miss rate for split caches = (74% x
0.0038) + (26% x 0.114) = 0.0324

Miss Rate 32KB unified = (43.3/1000) /(1+0.36) = 0.0318
i.e., the unified cache has slightly lower miss rate

2. Average Memory Access Time

= %inst x (Hit time + Inst. Miss rate x miss penalty)

+

%data x (Hit time + data Miss rate x miss penalty)
Average Memory Access Time split

=74% x (1 +0.0038 x 100) + 26% x (1 + 0.114 x 100) = 4.24
Average Memory Access Time unified

=74%x (1 + 0.0.0318 x 100) + 26% x (1+1+0.0318 x 100) = 4.44
i.e., the split caches have slightly better average access time and also avoids Structural Hazards

Q31. Let usconsider a fully associative write-back cache with cache entries that start empty. Consider the
following sequence of five memory operations and find, which address is not in the cache for no-write
allocate. 10 Marks Lecture# 28

Write Mem [100]
Write Mem [100]
Read Mem [200]
Write Mem [200]
Write Mem [100]

« For no-write allocate, the address [100] is not in the cache (i.e., itstag is not in the cache
* So the first two writes will result in MISSES

 Address [200] is also not in the cache, the reed is also miss

* The subsequent write [200] is a hit

« The last write [100] is still a miss

 The result is 4 MISSes and 1 HIT

« For the write-allocate policy

* The first access to 100 and 200 are MISSES

e Therest are HITS as[100] and [200] are both found in the cache

 The result is 2 MISSes and 3 HITs

« Conclusion
Either write miss policy could be used with the write-through or write-back

11 |

Q4. If computer A runsa program 1 in 5 seconds and computer B runs the same program in 10 seconds
and again Computer A Program 2 in 2 second and Computer B run same program in 1.5 second, which
computer isfaster and how much?

®)
1

Fxeciiion Timne

Performance

j ; Perlommance .
Relatve Performance —————&
Perfommunce.,

_ Exccution Time,

= . - (aka speedup)
Exccution Time,

Lxanople: tone laken Lo 1wl @ progrian
108 om A& s B
Fzewion T:iT_r_l__!:._}E ! Faeuibaom I_."m_;'_
— 15/ 1 — 1.5
SBo & s 1.5 timcs as festas B {rnd B 2 273 6s fast oz A)

Q4. Following state transition diagram represents a new branch prediction technique which is different
from the standard 2-bit predictor. (Repeated=2)

(a) Describe the behavior of this new branch prediction method in detail. How it is different from the standard 2-
bit predictor?

(b)Under what assumptions about the program behavior does this type of a branch prediction leads to better
performance than a standard 2-bit predictor?

Precict Take
ooy
[i 4 L]
o \‘! |
e e fie | ik
e =L ki — R 5
- ik e -
i FloaHiEE TR T " Predice Taken p
e —="Bradict Mot Taken A pat
3 e
Eradictkzien

.

— “—i,'""-'
| o
‘I'\ II-.. "__.- _."'
Pradict Mot Takisod -
Solution:
(@) Describethebehavior of this new branch prediction method in detail. How it is different from the

standard 2-bit predictor?

New branch prediction method’sbehavior is described as under:-

Predictor mentioned in the diagram has two states; Predict Taken and Predict Not- Taken.

Once the branch prediction is set to be as ,predict taken* and later due to any reason it is ,not taken", then
the state will be remain as ,predict taken". And if it is again ,not taken" then the state will be changed to
the state of predict ,not-taken". This phenomenon of the predictor is same as the standard 2-bit predictor.

Once the branch prediction is set to be as ,hot predict taken and later due to any reason it is
.predict taken®, then the state changes to as ,predict taken". This phenomenon of the predictor is
different from the standard 2-bit predictor. In standard 2- bit predictor, it will be wrong if the state is set
a ,hot-taken“and at least for two times before its state is changed to the ,predict taken".

12 |
- Therefore in this predictor, the decision has to be wrong for two times if it takes, predict taken”
to ,predict not taken" before prediction is reversed. But when the decision has to be wrong for one time
if it takes ,predict not taken" to ,predict taken™ before prediction is reversed.
Hence this predictor appears to be in favor of the prediction that ,branch will be taken".
(b) Under what assumptions about the program behavior does this type of a branch prediction
leadsto better performance than a standard 2-bit predictor?
Solution:
In the following circumstances, the branch prediction does lead to better performance than a standard

2-bit predictor:-

1. L ooped Programs
a. Any program which have a single or number of loops must take more time than normal.

b. Loops with variable lengths repeat the instruction unless required result is not achieved.
c. Here due to the repetition of instruction in a loop there will be one wrong guess of the state as
compared to the 2-bit predictor where two wrong predictions are guessed before changing its state.
d. If aloop has 500 repetitions then the predictor will guess out 499 times accurately (99.8%.)

2. Conditional Programs

a. Those programs which have some conditions like ,if* ,if else™etc have more chances to get benefit from
this new design of predictor.
b. The predictor if sets at the ,taken" state then there are chances that the performance will be enhanced

due the predictor”s property of one wrong guess.

SOLUTIONS

Question 1.
The 16-bit Zilog 28001 has the following general instruction format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| Mode pcode wh | | Operand?2 Operandl |

The mode field specifies how to locate the operands from the operand fields. The w/b filed is used in certain
instructions to specify whether the operands are byte or 16-bit words. The operand 1 field may (depending on
the mode field contents) specify one of
16 general-purpose registers. The operand 2 field may specify any general -purpose registers except register
0. When the operand 2 field is all zeros, each of the original opcodes takes on a new meaning.
(a) How many opcodes are provided on the Z8001?
Solution:
Let us analyze the problem abit:
i. The Opcode field of the instruction h@flve bits available i.e. from bit 9 to
13. Hence this amounts to atotal of 2~ = 32 Opcodes.
ii. As stated in the question that when operand 2 field is al zeros, each of origina
Opcodes takes on new meaning. This means 32 additional
Opcodesiif the value of operand 2 isall zero. 5
iii. Mode field consists of two bytes hence 2 = 4 different modes are possible.
Theoretically speaking for each combination of mode field there
isawhole class of Opcodes available.
iv. w/b field consists of one bit so only two possible values exist. Hence in this case aso
for each possible value of w/b field, there is a whole class of Opcodes available.
Hence there comes a total of (32 + 32)*4*2 = 512 possible Opcodes. These Opcodes result from different
combinations of modefield, w/b field and operand 2 field.
(b) Suggest an efficient way to provided more opcodes and indicate the trade-off involved.

Solution:

13 |

In order to provide room for additional Opcodes, we must sacrifice some functionality of the system. We
can't reduce the field size of mode field as it will severely reduce the functionality of the system and the
total Opcodes will also remain the samei.e. (64 + 64)

*2 * 2 =512. Also the w/b field cant be reduced further as it is already 1 bit of size. We also cantreduce
the size of operand fields because they have to access sixteen general purpose registers that is possible only
through 4 bit value. Hence some other strategy must be considered.

As we have seen that operand 2 can't access general purpose register O this is because if it has to access
register O it will place its address as 0000 but this al zero code actually changes the meaning of
original Opcodes. We can apply the same technique to operand 1 also. By making it not to use general
purpose register 15 or R15 which is addressed as 1111 we can assign new meanings to all original Opcodes
Hence by making the operand 1 field not use R15 and saying that if thisfield contains all

1sthen al original Opcodes will have different meanings we can increase the number of

Opcodes to (32 + 32 + 32)*4*2 = 768. So we have increased the number of Opcodes by

768 — 512 by 256 after sacrificing R15 from operand 1 field.

Question 2:

A computer architect is designing a hardware datapath implementation and the architect has determined
following circuit element delays.

Instruction Memory 150 ps
Decode 70 ps
Register Fetch 60 ps
ALU 150 ps
Data Memory 200 ps
Register Write Back 60 ps

(a) What isthe length of a clock cycle for asingle cycle datapath implementation?
Solution:

Time(lw) = Time(IF) + Time(ID+Reg.File) + Time(ALU) + Time(MemRead)
+ Time(Reg.FileWrite)

Time(lw) = 150 + (70+60) + 200 + 60
Time(lw) = 690ps

(b) What would be the frequency of a processor, corresponding to single datapath implementation?
Solution:
As we know

Frequency = G}-|z where c is the maximum clock cycle.
c

The value of clock cycle for single cycleis 1. It means that frequency of processor corresponding to single
cycle datapath is 1. Frequency can be defined as
Frequency = 1/clock rate

=1/690* 1001210 2 =1/690* 10" -3=1000/690= 1.4 9GHZ=1.45GHz

(c) What would be the length of fastest clock cycle for a 5-stage pipeline datapath?
What would be the corresponding processor frequency?

Solution:

Fastest clock cycle is that whose latency is minimum i.e 60 ps. but when we calculate the frequency, we
have to consider the slowest cycle length in multi-cycle datapath that is 200 ps.

1
Frequency = So 200 ps
_ 1. . -12,.9_ 3 _ _
Frequency = 10 10™ =1/200*10 ~ =1000/200=5 GHz

200

14 |

(d) How much faster is the 5-stage pipelined datapath compared to the single cycle datapath implementation?

Single cycle execution time= 690 ps Execution time for multi

cycle = 200ps So 690/200ps=3.45 times faster

It means that 5-stage pipelined datapath is 3.45 time faster than single cycle datapath.

If we analyze this according to frequency point of view then

5GHZz/1.45GHz=3.45 times faster

Question 3:

Consider the following mathematical expressions: W=B << 3
X=7B+B+C+D

For each expression, write an assembly language code:

(a) For Reg-Reg architecture

(b) For Reg-Mem architecture

W=B<<3
Reg-Reg | Reg-Mem
LOAD R2,B Shi [B], 3
Shl [R2], 3 STORE B, W
STORE R2, W
OR
shl [R2],3
STORE R3,W
X=7B+B+C+D
Reg-Reg Reg-Mem
LOADR2, B LOAD R2,B
LOADR]L C ADDRL, R2,C
LOAD R3, D ADD ADDR3,R1,D
R4, R3, R1 MUL R4, R2, 7
ADD R5, R4, R2 ADD R4, R4, R3
MUL R2, R2, 7 STORE R4, X
ADD R4, R5,R2
STORE R4, X
Question 4:
Following code lines are written in a high level language:
a=c+d;
b=c+e¢

The corresponding instructions for MIPS are;
These instructions are to be executed on a pipelined processor with forwarding.

(a) Identify hazards by showing the execution of these instructions per cycle basis.

No | Inst./ Cycle 1 2 3 4 5 6 7 8 9 10 11
1 LW R1, O(RO) Im | Reg | ALU | Dm Reg

2 LW R2, 4(R0) Im Reg ALU | Dm Reg

3 ADD R3, R1, R2 Im Reg ALU | Dm Reg

4 SW R3, 12(R0) Im Reg ALU | Dm Reg

5 LW R4, 8(RO) Im Reg ALU | Dm Reg

6 ADD R5, R1, R4 Im Reg ALU | Dm Reg

7 SW R5, 16(R0) Im Reg ALU Dm | Reg

15 |
Both add ingtructions have a hazard because of their respective dependence on theimmediately

preceding
b) Reorder these instructions to avoid any pipeline stalls.
No | Inst./ Cycle 1 2 3 4 5 6 7 8 9 10 11
1 LW R1, O(RO) Im | Reg | ALU | Dm Reg
2 LW R2, 4(R0) Im Reg ALU | Dm Reg
3 SW R3, 12(R0) Im Reg ALU | Dm Reg
4 ADD R3, R1, R2 Im Reg ALU | Dm Reg
5 LW R4, 8(RO) Im Reg ALU | Dm Reg
6 ADD R5, R1, R4 Im Reg ALU | Dm Reg
7 SW R5, 16(R0) Im Reg ALU Dm | Reg

(c) How many cycles are saved after executing the reordered instructions?

On a pipelined processor with forwarding, the reordered sequence will complete in two fewer cycles than
the original version.

Forwarding yields another insight into the MIPS architecture. Each MIPS instruction

writes at most one result and does this in the last stage of the pipeline. Forwarding is harder if there are
multiple results to forward per instruction or they need to write a result early on in instruction execution.

Question 5:
Following code segment is written in a high level language:
int randArray[1000] = { /* initialized with some random integers */ };
int suml =0, sum2 =0, sum3 =0, sum4 =0;
for (inti =0;i<1000;i++) //Branch 1: Loop Branch {
if (1%4==0) // Branch_2: If Condition 1 suml =
suml + randArray[i]; // Taken Path
else
sum2 = sum2 + randArray[i]; // Not-Taken Path
if (1%2==0) // Branch_3: If Condition 2 sum3 =
sum3 + randArray[i]; // Taken Path
else
sum4 = sumd + randArray([i]; // Not-Taken Path

}

16 |

(a) Find the prediction accuracy for all the branches using a separate last-time branch predictor for every branch
(initial value of each branch counter is "not-taken"). Show all steps.

Answer (a):
Under the last-time branch predictor, the prediction accuracy for each branch is shown in the followings:

Prediction accuracy for Branch_1: Loop Branch

This branch isaloop. The loop will run 1001 times. Initial value of the branch predictor is

L,hot taken* but the branch will be taken. So this is one wrong prediction and the predictor will set its value
from ,not taken" to taken. The prediction will be correct when the value goes from 1 to 999. But when the
value reaches 1000 then prediction is again wrong. So the predictor is only 2 times wrong out of 1001 times.
So the accuracy = (999/1001)* 100 = 99.8 % for Branch_1

Prediction accuracy for Branch_2: If condition 1

This branch is an if-else branch. As this branch is nested inside the loop so it will run

1000 times. Initially the predictor for this branch is set to ,not-taken".

 0%4=0
Predictor is set to ,not-taken®. Branch is taken. Wrong prediction occurred. Predictor is set
to ,taken"

e 1%4=1

Predictor is set to ,taken". Branch is not taken. Wrong prediction occurred.
Predictor is set to ,,not-taken"
* 2%4=2
Predictor is set to ,not-taken”. Branch is not taken. Correct prediction occurred.
Predictor does not change
* 3%4=3
Predictor is set to ,not-taken”. Branch is not taken. Correct prediction occurred. Predictor does
not change

Here the predictor is set to ,not-taken" and the next modulus is again going from 0, 1, 2,
3,0,1, 2, 3 ... So the above behavior will be repeated i.e. 2 out of 4 prediction will be
correct.

So the accuracy = (500/1000)* 100 = 50 % for Branch_2

Prediction accuracy for Branch_3: If condition 2
This branch is aso an if-else branch. As this branch is also nested inside the loop so it will run 1000
times. Initially the predictor for this branch is set to ,not-taken".

e 0%2=0
Predictor is set to ,not-taken®. Branch is taken. Wrong prediction occurred. Predictor is set
to taken"
e 1%2=1
Predictor is set to ,taken". Branch is not taken. Wrong prediction occurred. Predictor is set
to ,not-taken"
e 2%2=0
Predictor is set to ,not-taken". Branch is taken. Wrong prediction occurred. Predictor is set to
Ltaken"
e 3%2=1
Predictor is set to ,taken". Branch is not taken. Wrong prediction occurred. Predictor is set
to ,,not-taken,

The same process goes on and the predictor every times makes awrong prediction. So the accuracy =
(0/2000)* 100 = 0 % for Branch_3

(b) Find the prediction accuracy for al the three branches using a 2-bit saturating counter-based

predictor for every branch (initial value of each branch counter is "strongly not-taken™). Show all steps.

Answer:

Under the 2-bit saturating counter-based predictor, the prediction accuracy for each branchis shown

in the followings

Prediction accuracy for Branch_1: Loop Branch

This branch isaloop. The loop will run 1001 times. Initial value of the branch predictor is

17 |
L,strongly not taken®.
» At fird iteration the branch will be taken. Wrong prediction. The state will be
changed from ,strongly not taken" to ,,weakly not taken".

e At 2”d iteration the branch will be taken. Wrong prediction. The state will be
changed from ,weakly not taken" to ,,weakly taken".
* All the next prediction up to i<1000 will be correct
e At 1001thiteration (when i=1000) the branch will not be taken. Wrong prediction. So the
accuracy = (998/1001)*100 = 99.7% for Branch_1

Prediction accuracy for Branch_2: If condition 1
This branch is an if-else branch. As this branch is nested inside the loop so it will run

1000 times. Initially the predictor for this branch is set to ,strongly not-taken®.
e 0%4=0
Predictor is set to ,strongly not-taken". Branch is taken. Wrong prediction occurred.
Predictor is set to ,weakly not taken"
e 1%4=1
Predictor is set to ,weakly not taken™. Branch is not taken. Correct prediction
occurred. Predictor is set to ,strongly not-taken”
e 2%4=2
Predictor is set to ,strongly not-taken“. Branch is not taken. Correct prediction
occurred. Predictor does not change
e 3%4=3
Predictor is set to ,strongly not-taken®. Branch is not taken. Correct prediction occurred.
Predictor does not change
Here the predictor is set to ,strongly not-taken" and the next modulus is again going from
0,1,230,1,2, 3 ... Sothe above behavior will be repeated i.e. 1 out of 4 prediction
will be correct.
So the accuracy = (750/1000)* 100 = 75 % for Branch_2

18 |

Prediction accuracy for Branch_3: If condition 2
This branch is also an if-else branch. As this branch is also nested inside the loop so it
will run 1000 times. Initially the predictor for this branch is set to ,strongly not-taken".
e 0%2=0
Predictor is set to ,strongly not-taken". Branch is taken. Wrong prediction occurred.
Predictor is set to ,weakly not taken”
e 1%2=1
Predictor is set to ,weakly not taken™. Branch is not taken. Correct prediction
occurred. Predictor is set to ,strongly not-taken”
s 2%2=0
Predictor is set to ,strongly not-taken™. Branch is taken. Wrong prediction occurred.
Predictor is set to ,weakly not taken”
e 3%2=1
Predictor is set to ,weakly not taken. Branch is not taken. Correct prediction
occurred. Predictor is set to ,strongly not-taken,
The same process goes on and the predictor every times makes 1 correct prediction out of 2.
So the accuracy = (500/1000)* 100 = 50 % for Branch_3

Question 6:

Compare zero-, one-, two- and three-address machines by writing programs to compute: X =
(A+BxC)/ (D-ExF) for each of the four machines. The

instructions available for use are:

0-Address 1-Address 2-Address 3-Address

PUSH M LOAD M MOVE (X Y) MOVE (X YY)
POP M STORE M ADD (X = X +Y) ADD (X Y +2)
ADD SUB ADD M SUB (X X-Y) SUB(X Y-2)
MUL SUB M MUL (X = X xY) MUL (X Y x2Z)
DIV MUL M DIV (X _ X1Y) DIV(X Y/2)

DIV M
Solution:

0-Address Instructions: These instructions used stack to hold both operands and result. Stack based
architecture is not required any address because two operands are always present at the top of stack.
Operations are performed between values on the top of the stack (TOS) and second value on the stack
(SOS). Theresult always stored on the TOS.

1-Address Instructions: These instructions used accumulator based architecture. Accumulator is used to
hold the operand and result .LOAD instruction loads the value of variable in accumulator and STORE
instruction stores the value of accumulator in memory.

2-Address Instructions: 2-Address instructions used general purpose register to holds one of the operands
and result. In order to move the value of variable in register or value of register to the memory we used
MOVE instruction .R1 and R2 register is used.

19 |

3-Address Instructions: Maximum three operands are allowed in these instructions that may be
memory locations or registers.
The given expression X = (A + B x C) / (D - E x F), can be solved by the following sequence:

20

DIV ADDH
;pop out the result :divides thevalue
from TOS andstore it ;of accwith S
as memory X DIV S
POP X . stores vaJ_ ue
ofacc as X i.e
result
STORE X

Question 7:
Consider the results of question 1. Assume that M is a 16-bit memory address and that X, Y, and Z are
either 16-bit addresses or 4-bit register numbers. The one-address machine uses an accumulator, and the
two- and three-address machines have 16 registers and instructions operating on all combinations of
memory locations and registers. Assuming 8-bit opcodes and instruction lengths that are multiples of 4
bits, how many bits does each machine need to compute X?
Solution:

0-Address Instructions: As given in question that opcode is 8 hit long and 16 bit memory address
. Hence the maximum length of instruction is 24 bits. There are a total of 12 instructions hence 12 * 24 =
228 bits are required by the machine to compute it.

1-Address Instructions As given in question that opcode is 8 bit long and 16 bit memory address
. Hence the maximum length of instruction is 24 bits. There are atotal of 13 instructions. Hence total 13 *
24 = 312 bits are required by the machine to computeit.
2-Address | nstructions: We compute the bits as follows:

Instruction Bits
MOVER], E 8+4+8=20
MUL R1, F 8+4+8=20
MOVE R2, D 8+4+8=20
SUB R2, R1 8+4+4=16
MOVER2, Y 8+4+8=20
MOVERL1, B 8+4+8=20
MUL R1, C 8+4+8=20
MOVE R2, A 8+4+8=20
ADD R1, R2 8+4+4=16
MOVER2, Y 8+4+8=20
DIV R1, R2 8+4+4=16
MOVE R1, X 8+4+8=20
Total 228 hits

21|
4, 3-Address|nstructions:

Instruction Bits
MUL R1, E, F 8+4+8+8=28
SUBR1,D,R1 8+4+8+4=24
MUL R2, B, C 8+4+8+8=28
ADD R2, A, R2 8+4+8+4=24
DIV R1, R2, R1 8+4+4+4=20
MOVE X, R1 8+8+4=20
Total 144 bits

Question 8: Consider the following mathematical expressions:

U=A+B+DV

=C+D

W=B<<3

X=7B+B+C+DY

=X+V

For each expression, write an assembly language code: (a)
For Reg-Reg architecture

(b) For Reg-Mem architecture
REG-REG Architecture | REG-MEM Architecture
U=A+B+D
LOAD RL, ALOAD | MOV RL, A ADD
R2, B R4, R1, B
LOAD R3,D ADD ADD R5, R4, D
R4, R3,R2 STORERS5, U
ADD R4, R4R1
STORE R4,U
V=C+D
LOAD R4, C LOAD R4, C
LOAD R3, D ADD R4, R4, D
ADD R4, R3,R4 STORE R4,V
STORE R4,V
W=B << 3
LOAD R2, B Shi [B], 3
shl [R2], 3 STORE B, W
STORE R2, W OR
sl [R2],3
STORE R3W
X=7B+B+C+D
LOAD R2, B LOAD R2, B
LOADR1, C ADD R1, R2, C
LOAD R3, D ADD ADD R3, R1, D
R4, R3, R1 MUL R4, R2, 7
ADD R5, R4, R2 ADD R4, R4, R3
MUL R2, R2, 7 STORE R4, X

22 |

(@)

ADD R4, R5,R2
STORE R4, X

Y=X+V

LOADRL, X LOAD RL, X
LOAD R3,V ADD R2,R1,V
ADD R2, R1, R3 STORER2,Y
STORER2, Y

Question 9:
Consider the following code:
LD R1, O(R2) ; load R1 from address 0+R2
DADDR4,R1,R5 ;R4=R1+R5
SD R5, 100(R1) ; store R5 at address 100+R1
DSUBR3,R1,R4 ;R3=Rl -R4
Identify al the data dependencies in this code by showing the execution of these instructions per
cycle bases. Which of these dependencies are data hazards and will be resolved via forwarding?
(Conventional 5-stage RISC pipeline)
Solution:
In the given code two types of dependency exists
Data Dependency
Therefour data dependency in the given code.
1. Asfirg ingtructionl oads R1 from address 0+R2, the value of R1 is needed for
2"% ingtruction that is DADD R4, R1, R5. It means there is dependency between these two
instructions.
2. Second dependency is between SD R5, 100(R1) and LD R1, O(R2) because the value of R1 is
required for SD instruction which is not available at time. So there
is data dependency between these two instruction.
3. Third dependency also exists between DADD R4, R1, R5 and DSUB R3, R1, R4 on R4 because
the value of R4 is required for DSUB but it is not available on time so we have to use gtall.
4. There is data dependency between LD and DSUB instruction on R1. Since
DSUB required value earlier but it is not available.
Name Dependency
In the given code only one name dependency exist which does not affect the result that is on R5 between
DADD R4, R1, R5 and SD R5, 100(R1).

23|

Timing diagram

Instruction Clock cycles
s
1 12 |3 4 5 6 7 8 9 10 [11
LD R1, IF |ID | Ex | ME | WB
0(R2) M
DADD R4, IF | ID | stal | Ex MEM | WB
R1, R5
SD R5,
100(R1) IF | sal |ID Ex MEM | WB
DSUB RS,
R1, R4 Stal | IF ID Ex MEM | WB

(b)The timing diagram shown in part (a) is in fact the one when no forwarding or
bypassing is used and each memory reference takes one clock cycle. So to execute the
code 11 clock cycles arerequired in the said case.

(c) If the normal data forwarding and bypassing is used then the timing diagram would be
as under:

Clock Cycles
Instructions 1 2 3 4 5 6 7 8 9 10 11 12
LD R1, O(R2) IF | ID | EX | MEM WB
DADD R4, R1,
R5 IF ID Stall EX MEM | WB
SD R5, 100(R1) IF Stall ID EX MEM | WB
DSUB R3, R1,
R4 IF ID EX MEM WB

(a) Find the prediction accuracy for all the branches using a separate last-time branch predictor for every branch

So, it will take 9 clock cycles to execute the code if norma data forwarding and

bypassing is used.

Question 10:
Following code segment is written in a high level language:
int randArray[1000] = { /* initialized with some random integers */ };
int suml =0, sum2 =0, sum3 = 0, sum4 = 0;
for (inti =0;i<1000;i++) //Branch_1: Loop Branch

{
if 1%4==0) //Branch_2: If
Condition 1 sum1 = sum1 +
randArray[i]; // Taken Path else
sum2 = sum2 + randArrayl[i]; // Not-
Taken Pathif (i % 2==0) // Branch_3:
If Condition 2
sum3 = sum3 + randArrayl[i]; // Taken Path
else
sum4 = sumd + randArray([i]; // Not-Taken Path
}

(initial value of each branch counter is "not-taken"). Show all steps.
Solution:

24 |

In order to know the prediction accuracy for al branches let us discuss all branches one by one.

Branch 1: This branch is basically a loop branch. In this loop it is predict that will be

taken or not taken. Of course loop will execute according to limit given by loop variable. The loop will be
taken till the value of loop is within given limit. In the above code loop will execute 1000 times. As
mentioned in the question that the initia value is not taken so this will be first error because the
predictor will predict that loop will not taken but infect it executes. So the value is reversed from not
taken to taken.

We know that predictor is predicting loop taken now but after limit cross the predictor is again predict the
loop taken but infect it is not taken because increment variable meet the limit so it will be second wrong
prediction of predictor and value reversed from taken to not taken.

If we observe above prediction then we can see that there are only two wrong prediction made by
predictor. It means that 998 time loop prediction was accurate but only two

times were wrong.

Hence accuracy for branch 1 is 998/1000=99.8 %

Branch 2: Thisis basically an “if” statement which will execute on the base of value of i

of loop. “if” statement will execute on the base of value of control variable i of loop by taking its modulus 4
that is %4 , if its value is equal to equal to zero then the path taken. The modulus will be zero when it is
multiple of 4 that is0,4,8,12,.......

On the base of above detail, | conclude the following result

Iteration(i) Branch Prediction Bit Fault Error

i=0 taken incorrect Reversed occur Yes

i=1 Not taken incorrect reversed Occur Yes

i=2 Not taken Correct Not Not occur No
reversed

i=3 Not taken Correct Not Not occur No
reversed

i= Taken Incorrect Reversed occur Yes

i=5 Not taken Incorrect Reversed occur Yes

i=6 Not taken Correct Not Not occur No
reversed

=7 Not taken correct Not Not occur no
reversed

We observe from above table that for 8 iterations, four times prediction is correct and 4 times not correct.
It means that accuracy is 50%. So for 1000 iterations prediction 500 times will be correct and 500 times will
be incorrect.

Branch 3:

Thisis basically an “if” statement which will execute on the base of value of i of loop. “if” statement will
execute on the base of value of control variable i of loop by taking its modulus 2 that isi%2 , if itsvalueis
equal to equal to zero then the path taken. The modulus will be zero when it is multiple of 4 that is
0,2,4,6,8, 10, 12,

25 |

On the base of above detail, | conclude the following result

Iteration(i) Branch Prediction Bit Fault Error
i=0 taken incorrect Reversed occur Yes
i=1 Not taken incorrect reversed occur Yes
i=2 taken incorrect reversed occur Yes
i=3 Not taken incorrect reversed occur Yes
i=4 Taken Incorrect reversed occur Yes

We observe from above table that for 4 iterations , prediction(guess) is always wrong. It means that
accuracy is 0%. So for 1000 iterations prediction 1000 times will be correct wrong.

(b)Find the prediction accuracy for all the three branches using a 2-bit saturating counter- based predictor for
every branch (initial value of each branch counter is"strongly not- taken™). Show all steps.
Solution:
In order to know the prediction accuracy for al branches let us discuss all branches one by one.

Branch 1: This branch is basically a loop branch. In this loop it is predict that will be taken or not
taken. Of course loop will execute according to limit given by loop variable. The loop will be taken till the
value of loop is within given limit. In the above code loop will execute 1000 times. As mentioned in the
guestion that the initial value is not taken so this will be first error because the predictor will predict
that loop will not taken but infect it executes. So the state of predictor changes to weakly not taken.

The second error occurs at iteration two when predictor predict that loop will not run but infect it execute.
The state of predictor changes to weakly taken.

We know that predictor is predicting loop taken now but after limit cross the predictor is

again predict the loop taken but infect it is not taken because increment variable meet the limit so it will
be third wrong prediction of predictor and state of predictor changes to weakly taken. If we observe above
prediction then we can see that there are only three wrong prediction made by predictor. It means that 997
time loop prediction was accurate but only two times were wrong.

Hence accuracy for branch 1 is 997/1000=99.7 %.

Branch2:

Thisis basically an “if” statement which will execute on the base of value of i of loop. “if” statement will
execute on the base of value of control variable i of loop by taking its modulus 4 that isi%4 , if its value is
equal to equal to zero then the path taken. The modulus will be zero when it is multiple of 4 that is

04,812,.......

On the base of above detail, | conclude the following result

Iteration(i) Branch Prediction State Fault Error

i=0 taken correct Weekly not | occur Yes
taken

i=1 Not taken incorrect Strongly Not occur No
not taken

i=2 Not taken Correct Strongly Not occur No
not taken

i=3 Not taken Correct Strongly Not occur No
not taken

i=4 Taken Incorrect Weekly occur Yes
not taken

i=5 Not taken correct Strongly Not occur No
not taken

i=6 Not taken Correct Strongly Not occur No
not taken

26

i=7 Not taken correct Strongly Not occur no
not taken

We observe from above table that for 8 iterations, 6 times prediction is correct and 2 times not correct. It
means that accuracy is 75%. So for 1000 iterations prediction 750 times will be correct and 250 times will
beincorrect. So 750/1000=75%.

Branch 3:

Thisis basically an “if” statement which will execute on the base of value of i of loop. “if” statement will
execute on the base of value of control variable i of loop by taking its modulus 2 that isi%?2 , if its valueis
equal to equal to zero then the path taken. The modulus will be zero when it is multiple of 4 that is
0,24,6,8, 10, 12,,.......

On the base of above detail, | conclude the following result

Iteration(i) Branch Prediction state Fault Error

i=0 taken incorrect Weekly not | occur Yes
taken

i=1 Not taken correct Strongly Not occur Yes
not taken

i=2 taken incorrect Weekly not | occur Yes
taken

i=3 Not taken correct Strongly Not occur Yes
not taken

i=4 Taken Incorrect Weekly not | occur Yes
taken

We observe from above table that for 4 iterations , two times prediction is correct and two times not
correct. It means that accuracy is 50%. So for 1000 iterations prediction
500 times will be correct and 500 times will be incorrect.

Question 11:

MIPS chooses to simplify the structure of its instructions. The way we implement complex
instructions through the use of MIPS ingtructions is to decompose such complex instructions into
multiple simpler MIPS ones. Show how MIPS can implement the instruction swap $rs, $rt, which swaps
the contents of registers $rs and $rt. Consider the case in which there is an available register that may be
destroyed as well as the care in which no such register exists.

If the implementation of this instruction in hardware will increase the clock period of a single-instruction
implementation by 10%, what percentage of swap operations in the

instruction mix would recommend implementing it in hardware?

Solution:
a. Swapping when a register is available: Suppose we have a register $rz that is available for
swapping operation and which will be destroyed at the end of operation then the sequence
of instructions will be as follows:

MOVE $rz, $rs : moves the contents of $rsto $rz
MOVE $rs, $rt : moves the contents of $rt to $rs
MOVE $rt, $rz : moves the contents of $rz in $rt

b. Swapping when no register is available: When there is no register available
for swapping, there are two possibilities in which we can accomplish this task i.e. through register
to memory transfer operations or through XOR algorithm. We touch both of them:
i. Register toMemory:

SW $rs, X ; stores word from $rsto X location in memory SW $rt, Y
; stores word from $rt to Y location in memory LW $rs, Y ; loads
word from Y location to $rs
LW $rt, X ; loads word from X location to $rt ii.

XOR algorithm:
XOR $rs, $rs, $rt

XOR $rt, $rs, $rt
XOR $rs, $rs, $rt

27 |

c. Since implementation of instruction at hardware level calls for 10% increases in clock period.
That means that if 10% of instructions in the instruction mix are
swap instruction then there will be 1% increase in clock period and if there are
20% ingtructions then there will be 2% increase. So in our opinion there must not be more than
30% swap instructions in the instructions mix.

Question 12

Compare zero-, one-, two- and three-address machines by writing programs to compute: X = (A +B x C) /

(D-ExF)

for each of the four machines. The ingtructions available for use are:
0-Address 1-Address 2-Address 3-Address
PUSH M LOAD M MOVE (X YY) MOVE (X YY)
POP M STORE M ADD (X = X +Y) ADD(X Y +2)
ADD SUB ADD M SUB (X X-Y) SUB(X Y-2)
MUL SUB M MUL (X = X xY) MUL (X Y x2Z)
DIV MUL M DIV (X X/Y) DIV(X Y/2)

DIV M
Solution:

a. 0-Address Instructions: 0-Address instructions are present in stack based architecture. The two
operands are always present at the top of the stack so no address is to be given. Result is aso
placed at top of stack: in order to solve the
expression X = (A + B x C) / (D - Ex F), we give the sequence of instructions as:

PUSH A ; pushes A on stack
PUSH B ; pushes B on stack
PUSH C ; pushes C on stack
MUL ; multiplies the two operands on top of stack i.e. B, C,

; result stored on top of stack (TOS).

ADD ; adds the two operands on top of stack i.e. result of
; previous instruction and A result stored on TOS
PUSH D ; pushes D on stack PUSH
E ; pushes E on stack PUSH F
; pushes F on stack
MUL ; multiplies the two operands on TOS i.e. E, F result TOS SUB

; subtracts the two operands on TOS i.e. result of last
; instruction and D result stored on TOS
DIV ; divides the two operands on TOS, result stored on TOS POP X
; pop out the result from TOS and store it as memory X
b. 1-Address Instructions. 1-Address instructions are present in accumulator based architecture.

In this kind, one of the operand is always present in accumulator and the result is also stored in
accumulator. LOAD instruction loads the value of variable in accumulator and STORE instruction
stores the value of accumulator in memory. In order to solve the expression X = (A + Bx C) / (D
- Ex F), we give the sequence of instructions as:

; loads accumulator (acc) with F

; multiplies the value of acc with E, result
; stored in acc

LOAD F
MUL E

STORE G ; stores the value of acc as amemory location G LOAD D

; loads acc with D

SUB G ; subtracts the value of G from value of acc STORE S ;
stores the value of acc as memory location SLOAD C ; loads acc
with C

MUL B ; multiplies the value of acc with B

STOREH ; stores the value of acc as memory location H LOAD A

; loads the acc with value of A

ADDH ; adds the value of H in value of Acc
DIV S ; divides the value of acc with S
STORE X ; stores the value of accumulator as X i.e. result

Cc. 2-Address Instructions: 2-Address instructions involve a general purpose register which
holds one of the operands and also stores result in it. MOVE instruction is used to move the value
of variable in register or move the value of register to the memory. For this purpose we used the

28
| registers R1 and R2. In order to solve the expression X = (A + B x C) / (D - E x F), we give the

sequence of instructions as follows:

MOVE R, E ; movesthevaueof EinR1

MUL R1, F ; multipliesthe value of R1 with variable F MOV E

R2, D ; movesthevaueof D in R2

SUB R2, R1 ; subtracts the value of R1 from value of R2 and stores

; theresult in R2

MOVE R2, Y ; movesthe value of R2 to amemory location Y MOVE R1,

B ; movesthevalueof BinR1

MUL R1, C ; multipliesthe value of C with valuein R1

MOVE R2, A ; movesthevalueof A in R2

ADD R1, R2 ; addsthevaluesof R1 and R2 and stores the result in
' R1

MOVE R2,Y ; movesthevalueof variable Y in R2

DIV R1,R2 ; dividesthe value of R1 with value of R2 and storesin
' R1

MOVE R1, X ; movesthe value of R1 asamemory location X

29 |

d. 3-Address Instructions: These instructions allow at the most three operands that may be
memory locations or registers. The sequence of instructions to compute value of X = (A + B

x C) /(D - ExF)isgive below:

MUL RL, E, F ; multiply E, F and storein R1

SUBR1, D, R1 ; Subtract contents of R1 from D and storein R1

MUL R2, B, C ; multiply B, C and storein R2

ADD R2, A, R2 ; Add contents of R2in A and storein R2

DIV R1, R2, R1 ; Divide contents of R2 by contents of R1 and

; storein R1

MOVE X, R1 ; move the contents of R1 in memory location X
Question 14:

Compare zero-, one-, two- and three-address machines by writing programsto compute: X = (A + Bx C) /

(D-ExF)

For each of the four machines, the instructions available for use are:

0-Address 1-Address 2-Address 3-Address

PUSH M LOAD M MOVE (X ' Y) MOVE (X YY)
POP M STORE M ADD (X = X +Y) ADD(X Y +2)
ADD SUB ADD M SUB (X X-Y) SUB(X Y-2)
MUL SUB M MUL (X = X xY) MUL (X Y x2Z)
DIV MUL M DIV (X X1Y) DIV(X Y/2)

DIV M
Answer:

The comparison has been given in the following table with the programs in each column and the total

instruction count in the bottom row.

0-Address 1-Address 2-Address 3-Address
PUSH E LOADE MOVE X, A MUL z, B, C
PUSH F MUL F MOVEYy, B ADD w, A, z
MUL STORE s MULy, C MUL s, E, F
PUSH D LOAD D ADD X,y SUBt,D,s

SuU SUB s MOVE 2z D DIV X,w, s
B PUSH B STORE s MOVE w, E
PUCH C LOADB MUL w, F
MUL MUL C SUB z, w
PUSH A STORE t DIV X,z
ADD LOAD A
DIV ADD t
POP X DIV s

STORE X

12 13 9 5

b) Assume that M is a 16-bit memory address and that X, Y, and Z are either 16-bit addresses or 4-bit
register numbers. The one-address machine uses an accumulator, and the two- and three-address
machines have 16 registers and instructions operating on all combinations of memory locations and
registers. Assuming 8-bit opcodes and instruction lengths that are multiples of 4 bits, how many bits does
each machine need to compute X?

Answer:

0-Address machine: This machine has 8-bit opcode and one memory address of 16 bits. So the
instruction length is 8+16=24. The machine needs 24 * 12 = 284 hits to

compute X

1-Address machine: This machine has 8-bit opcode and one memory address of 16 bits. So the
instruction length is 8+16=24. The machine needs 24 * 13 = 312 bits to compute X

2-Address machine: This machine has 8-bit opcode and two 4-bit register numbers or one 4-bit register
and 16 bit memory address. So the instruction length is either

8+4+4=16 or 8+4+16=28. There are 4 MOVE instructions having 28 bits each and 5

arithmetic instructions having 16 bits each. The machine needs 28*4 + 16*5 = 192 bits to compute X

30 |

3-Address machine: This machine has 8-bit opcode and three 4-bit register numbers. So the instruction
length is 8+4+4+4=20. The machine needs 24 * 5 = 120 hits to compute X
Question 16: In the following code

For (i=2;i<100;i=i+1)

ai] = bi] + 4] [*s1*]
ci-1] = il + d[i] [+ 2%
dli-1] = 2 * bfi] [*s3*]
bli+1] = 2* bfi] [*sa¥]

I. List al dependences (output, anti and true)
[1. Indicate whether the true dependences are loop carried or not? I1l. ~ Why
the loop is not parallel?

Solution:
(i)
There are total six dependencesin the loop
1. Ther isantidependence from S1to sl onadi] = bJi]

+ 4[] [*S1*/
2. Thereistrue dependence form S2 to S1 &[i] = b[i]
+ 4[] [*S1*/

cl[i-1] = 4[i] + d[i] [*s2*]

Hence, the value of ain S2 is dependet on the result of ain S1.
Thereisloop carried true dependence from $4 to S1 on b.
Thereisloop carried true dependence form $4 to S3 on b.
Thereisloop carried true dependence form S3 to S3 on b.
Thereisloop carried true dependence form S3to S3 on a.

ogkw

(ii)

We know that for loop to be parallel, each iteration must be independent of all other. Here in this
case, as dependences 3,4,5 (in part i) are true dependences. They cannot be removed by renaming or any
such technique. These dependence are loop carried as the iterations of the llp are not independent.

(iii)

The factor mention in (ii), imply the loop is not parallel as the loop is written. Hence, loop can be made
paralel by rewriting the loop to find a loop that is functionality equivalent to the original loop that can be

made parallel.
Question 17:
The loop given below is a dot product (assuming the running sum in F2 initially 0) and contains a
recurrence
L.D FO, O(R1); Nload X([i]
L.D F4, O(R2); Nload Y[i]
MUL.D FO,FO,F4 Imultiply x[i1*y[i]
ADD.D F2,FO,F2 /add sum = sum +x[i] * y[i]
DADDUI R1,R1,#8 /decrement x index i
DADDUI R2,R2,#-8 /decrement y index i
BNEZ R1,foo /loop if not done

Assume the pipeline latencies from the table shown below, and a | cycle delayed branch
and considering single issue pipelines

Instruction Instruction Using Latency in Clock
Producing Result Result Cycle
FPALU op Another FP ALU 3
op
FPALU op Store Double 2
Load double FPALU op 1
Load double Store Double 0

(@ (i) unroll the loop sufficient number of time to schedule it without delay

31
| (i) show the schedule after eliminating any redundant overhead instruction
(b) Write the unrolled and scheduled code for the transferred code as assume loop body takes 10
cycles
Solution:
(@
(i) This code has loop carried dependence from iteration | to i+1. It aso has high latency dependence
within and between loop bodies. Now if we unroll the loop twice in order to
avoid any delay, we will get the following resullt.
Foo
L.D FO, O(R1) L.D
F4,0(R2) L.D F6,
#8(R1)
MUL.D FO,FO,F4 1fromL.DF4,0(R2)L.D
F8, #-8(R2)
DADDUI R1,R1,#16
DADDUI R1,R1,#16
MUL.D F6,F6,F8 1fromL.DF8,-8(R2) ADD.D
F2, FO, F2 3 from MUL.D FO, FO, F4
DADDUI R2, R2, #-16
Stall
BNEZ R1, Foo
ADD.D F2,F6,F2 indot, and3fromADD.D F2, FO, F2

Hence, the dependences chain from one ADD.D to the next ADD.D forces the stall

(i)
In order to unroll further to schedule eliminating the stall (overhead), we take advantage of commutatively and
associativity of dot product of two running sums in the loop. One for even elements and one for add elements,
and combine the two partial sums outside the loop body.

Foo
L.D FO, O(R1)
L.D F6, -8(R3) L.D F4,0(R2) L.D F8, -8(R2)
MUL.D FO,FO,F4 1fromL.D F4,0(R2) MUL.D
F6, F6, F8 1fromL.D F8, -8(R2)
DADDUI R1,R1,#16
DADDUI R2, R2,#-16
ADD.D R2,FO, F2 3 from MUL.D FO, FO, F4
BNEZ R2, Foo
ADD.D R2,FO, F2 3 from MUL.D F6, F6, F8
And fill the branch delay slot
ADD.D F2,FO, F2 combine even and odd elements
Conclusion:

Here, the code assumes that the loop executes a non zero, even number of times. The loop itself is stall
free, but there are three stalls when the loop exists. The loop body

takes 11 clock cycles

B: Asloop body takes 10 cycle

Integer Ingt. FP Inst. Clock Cycle
Foo

L.D FO, O(R1) 1
L.D F6, -8(R1) 2
L.D F4, 0(R2) 3
L.D F8, -8(R2) 4
DADDUI R1, R1, #16 MUL.D FO, FO, F4 5
DADDUI R2, R2, #-16 MUL.D F®6, F6, F8 6
Stall 7
Stall 8
BNEZ R1,Foo ADD.D F2,FO,F2 9

ADD.D F2, FO, F2 10

32|

Bar: ADD.D F2,FO,F2 14

Question 18:
Consider acode:

For (i=2;i<100;i+=2) Ai]
=g50* i+1]
i Normalize the loop such that start index at 1 and increment it by 1 on every
iteration
ii. Write the normalized version of the loop then use GCD test to see if there is dependence.

Solution:
i By normalize the loop, it leads to amodified ¢ code sa shown below; For (i = 1;i <
50; i++)
{
A[2*i]=a[(100* i) + 1] ;multiple constant by 2

}
ii. The GCD test shows the potential for dependences written an array indexed by the function,

Ai + b and ci + d only, If the condition (d-b) mod GCD(c, a) =0 is satisfied. Now, applying
GCD test, in that case we will get, a=2, b=0, c=100 that allows us to determine dependence in
loop. Thus, GCD will be, GCD(2,
100) = 2 and d-b=1. Here, as 1 is factor of 2. Thus, GCD test indicates that there is
dependence in the code. In redlity, there is no dependence in the code. Since the loop lead it
value from g 101], a[201]....g[5001] and again these values to a[2], g 4].....a[100].

Question 19:

Which approaches increase the amount of ILP?

Solution:

Loop unrolling, software pipelining, trace scheduling and superblocks approaches increase the amount of

ILP, which can be exploited by a processor issuing more than one instruction on every clock cycle.

Question 20:
Write down the reasons for which recurrence detection isimportant
Solution:
Recurrence detection isimportant for two reasons:
1. Some architecture have special support for executing recurrences
2. Some recurrence can be the source of areasonable amount of parallelism
Question 21:
Find whether dependence exist in the following loop.
For(i=1;i<100;i=i+1)

X[2* i +3] =x[2*] * 5.0;

33

Soluion: Herein X[2* i + 3] suchthat a=2 and b=3 and inx[2 *i] such that c = 2 and d =0
Thus GCD(a, ¢) =2 and d-b=-3
Here, as 2 does not divide -3 so no dependence is possible

Question 22:
Define affine index?

Solution:
An affineindex is defined as follows;
An array index is affine if it can be written in the form of an expression. Here, aand b are constant, and i is the loop
index variable. E.g. in the loop
For(i=1;i<100;i=i+1)

X[2*%i+3] =x[2%]* 5.0;

}
Here, theindex value X[2 * i + J]isaffinewitha=2andb=3
Question 23:
How compiler finds dependences and its assumption?
Solution:
The compiler detects the dependence using dependence analysis algorithm and this algorithm works on assumptions
that:

- Array indices are affine

- Thereexist GCD of two affine indices
Question 24:
Suppose we are applying the tomasulo™s algorithm to implement the out of order execution with dynamic
scheduling, the tomasulo™s organization has three load and three store functional units(FU"s), one “add” FU
with three “add” reservation station, and one “multiply” FU with two “multiply” reservation stations. All the load,
store, and and multiple FU"s are pipelined.
A picec of loop code with mostly floating point operations is executed in such a machine as shown in the following
figures in cyclel, the instruction “LD FO,)(R1)” isissued. The register R1, used for addressing and iteration
control, is 80 in cycle 1. After each iteration, R1 will be deducted by 8 (“SUBI R1, R1, 8”).
The following figure on the right shows the Tomasulo structure with instructions for two iterations except for the
loop maintenance instruction (SUBI and BNEZ).
A negative number in “Exec Comp” is used to indicate the remaining cycles for this instruction in the execute stage
(e.g, -1 means the next cycle is the execution completion cycle for thisinstruction).

Loop: L.D FO, O(R1)

MULI.D F4, FO, F2
SD F4,0(R1) SUBI
R1,RL 8

BNEZ R1, Loop
The instruction sequence of the loop

The state of Tamasulo™s organization in cycle 13
a. By the start of cycle 12, how many instructions have completed their issue step?
List these instructions that are issued before cycle 12
b. At the beginning of cycle 12, what is the next instruction be issued? Can it be issued in cycle 12? Show the
instruction and explain the reasons why it can or cannot be issued

34

Solution:
a. 11 instructions have been issued

L.D FO, O(rl) MULT.D F4,
FO, F2
SD F4, 0(R1) SUBI
R1,R1,8
BNEZ F1,R1,8
L.D FO, O(R1) MULT.D
F4, FO, F2
SD F4, 0(R1) SUBI
R1,R1,8
BNEZ R1, Loop
L.D FO, O(R1)

b. MULT.D F4, FO, F2
No. the MULT.D instruction cannot be issued because no multiply reservation station is available.
Thereisastructural hazard.
Question 25:

Suppose number in an array of 200000 randomly generated 16bit unsigned integers. The following code snippet
sums up asubset of elements in the array

L1 std::sort (numbers, numbers+200000); /Isort the array in ascending order
L2

L3 Long long sum = 0; /I sumisa64-bit integer

L4

L5 for(unsigned longj = 0; j < 200000 ; j++) {

L6 if (number[i] < 200000) {

L7 sum = sum + numberg[i];

L8 }

L9 } /I end of for loop

Suppose we compile the code with a moderate optimization. It is known that code in the range L5-L9 runs much more
dowly if we remove the code in L1, i.e. , no sorting is done before running code L5-L9 suppose your computer has
adopted a 2-bit branch predictor. Please explain why there is a slowdown without sorting.
Solution:
Without sorting, branch predictor has high miss prediction rate for the branch on L6 and hence incurs significant
branch penalty. The array numbers contains randomized value, and predictor keeps making inaccurate prediction
and switching between taken and not taken states.
Without sorting, the branch for L6 is taken consistently at first and then not taken consistently later when
the value in the array is larger than or equal to 30000. The 2-hit predictor only miss predicts a couple of time at the
beginning of the loop and when the value in array become equal to or larger than 300000. So very little branch
penalty isincurred.

Question 26:
Find the dependences in case of loop level paralelism(LLP) For (i = 1000; i > 0;
i=i-1)
X[i]1 = X[i] +s;
Solution:

Here, two dependences occur. First, there exist dependence between the two uses of x[i] within the same
iteration, so this is loop-level dependency but not loop carried. Second, dependency occurs between the successive
uses of i in different iterations, which isloop-carried

Moreover, there exist induction variable x[i]. therefore, dependence can be identified through compiler analysis near
source level, and can be eliminated by loop unrolling.

Q.27. We have a single stage, non-pipelined machine and a pipelined machine with 5 pipeline stages. The cycle time
of theformer is5 nsand the latter is 1ns.

a. Assuming no stalls, what is the speedup of the pipelined machine over the single stage machine?
SOL : Speed up=5/1=5

35

b.Given the pipeline stalls 1 cycle for 40% of the instructions, what is the speed up now?
SOL: Speed up = (1 CPI * 5ns) / (1.4 CPI * 1ns) = 3.58

Q.28. For thefollowing, assumethat values A, B and C residein memory. Also assumethat instruction operation
codes arerepresented in 8 bits, memory addresses are 64 bits and register addresses ar e 6 bits.

For each instruction set architecture shown in the table below, how many addresses, or names, appear in each instruction for
the code to compute C = A+B and what isthe total code size?

Stack Accumulator Register-memory) Register

(L oad-store€)

Push A Load A Load R1, A Load R1, A

Push B Add B AddR3,R1,B Load R2,B

Add Store C StoreR3, C Add R3, R1, R2

Pop C

TABLE: The code sequence for C = A + B for four classes of instruction sets.
SOLUTION:

Stack Accumulator Register-memory Register

Push A(72) Load A(72) Load R1, A(80) Load R1, A(80)
Push B(72) Add B(72) Add R2, R1, B(88) Load R2, B(80)
Add(8) Store ¢(72) Store ¢, R2(80) Add R3, R1, R2(80)

Pop ¢(72)

36

Question 15: Choosethe correct option:
1. Processwith lower CPI"s will always be faster

a True

b. False
2. Instruction count in a program depends on the instruction set architecture used

a. True

b. Fase
3. The Sun SPARC architecture has fewer addressing modes than | A-32(x86)

a. True
b. Fase

4. If we use an ingtruction in the branch target path to fill a delay slot, we may need to duplicate the
instruction.
a True

b. Fase
5. To run on a dynamic scheduling processor, such as an IBM 360/A1 system which implements the

Tomasulo agorithm, an ISA mush be 16 or more FP register
a Ture

b. False
6. Which one of the following type of hazards cannot be removed by register renaming?

a. RAW hazards
b. War hazards
c. WAW hazards
d. Noneof theabovee. All of
the above
7. Which of the following factors increases the cost of a processor directly and most significantly?
a. Supporting Bell Lab“sUnix operating system
b. Increasingthedie area of the processor chip
¢. Increasing the diameter of the wafer d. Increasing
the clock cycletime
8. Which one of the following addressing modes are least likely to be used in common programs?
a. Register direct
b. Register indirect c.
Immediate

d. Memory indirect
9. WithaVLIW design, which of the following component ban be simplified?

a. Processor

b. Physical memory (DRAM)
c. Cache

d. Complier

10. There are several classes of ISAs-accumulator based 1SAs, stack based I1SAs, and genera purpose
register based 1SAs. The intel x86 computers (using the |A-

32 instruction set) belong to
a. Accumulator based architecture b. Load/store architecture
c. General purposeregister (GPR) based | SA

d. Stack based ISA

37

27-12-15

Q:1-Compar e perfor mance of two programs
1 2sec 1.5sec
2 5sec 10 sec

Which computer is faster for each program?

Q:2.We have a single stage, non-pipelined machine and a pipelined machine with 5 pipeline stages. The cycle time of
theformer is5nsand thelatter is1ns.
Assuming no stalls, what is the speedup of the pipelined machine over the single stage machine?

cs704 today at 8:30am 27-12-2015
Q.1: Main advantage of Tomasulo’a design over scoreboead. (5)

Q.2: The MIPS designers wanted the integer multiply and divide instructio...n to operate in parallel with other integer
instructions. Since multiply and divide take multiple clock cycle, avalid argument can be: whether it possible to implement
precise exceptions or not. (5)

Classify the following statements as: completely accurate, partially accurate, or wrong.

i. It isimpossible to implement precise exceptions, since a multiply or divide can raise an exception after instructions that

follow it.
ii. It is trivial once the start, and so the timing of all exception is obviously precise... don’t remember exactly

Unsolved Questions;

Q.1. (3+3+8=14 Marks)

Assume that we are considering enhancing a machine by adding a vector mode to it. When a computation is run in vector
mode it is 20 times faster than the normal mode of execution. We call the percentage of time that could be spent using
vector mode the percentage of vectorization. [Y ou don*t need to know anything about how they work to answer this
question!] (Repeat =2)

a. What percentage of vectorization is needed to achieve a speedup of 2?

b. What percentage of vectorization is needed to achieve one-half the maximum?

¢. Suppose you have measured the percentage of vectorization for programs to be speed up attainable from using vector
mode? 70%. The hardware design group says they can double the speed of the vector rate with a significant additional
engineering investment. Y ou wonder whether the compiler crew could increase the use of vector mode as another approach
to increasing performance. How much of an increase in the percentage of vectorization (relative to current usage) would
you need to obtain the same performance gain? Which investment would you recommend?

Q.2. Consider three branch prediction schemes: branch not taken, predict taken, and dynamic prediction. (5)
Assumethat they all have zero penalties when they predict correctly and 2 cycles when they arewrong. Assumethat
the aver age predict accuracy of the dynamic predictor is 90% . Which predictor isthe best choice for the following
branches? RR=2

i A branch that is taken with 95% frequency

ii. A branchthat istaken with 70% freguency

Q.3. In a5-stage pipelined processor, all theinstructions are not active in every stage of the pipeline. If weignorethe
effects of hazards, which of the following statementsarecorrect? (6)

i Allowing jumps, branches, and ALU operations to take fewer cycles only helps when no loads or stores are in the
pipeline, so the benefits are small.

ii. Y ou cannot make AL U instructions take fewer cycles because of the write back of the result, but branches and
jumps can take fewer cycles, so there is some opportunity for improvement.

iii. Instead of trying to make instructions take fewer cycles, we should explore making the pipeline longer, so that
instructions take more cycles, but the cycles are shorter. This could improve performance.

Q.4 Describe the following (4+2)
a) List down two advantages and two disadvantages of register-memory architecture.
b) What is the difference between branch and jump instruction?

Q. 5. Answer the following questions (5+5)

38

a What is the impact of increasing the size of branch-prediction buffer on two branchesin a program?
b. Consider aloop branch that branches nine timesin arow, and then is not taken once. What is the prediction
accuracy for this branch, assuming the prediction bit for this branch remains in the prediction buffer?

Q. 6. Suppose we have two implementations of same instruction set architecture. Computer A has a clock cycle time of 250
psand a CPI of 2 for some program, and computer B has a clock cycle time of 500 psand a CPI of 1.2 for the same
program. Which computer is faster for this program and how much? ET = IC*CPI*CT ETA =I1C * 2*250 = 500IC ETB =
IC* 1.2* 500=600IC. (7)

Q.8. For thefollowing sequence of instructions, list all RAW, WAR and WAW dependencies Repeated = 2
(14

LD R1, 100(R2) ; load into R1 value at 100+(R2)

ADD R1, R3, R1 ;RI=R3+R1

ADDI R2, R3, #25 ; add -25 to R4 and store in R2

SD 100(R2), R1 ; store R1 at 100+(R2)

ADD R3,R1, R3 ;R3=R1+R3

ADDI R1, R1, #25 ; add immediate 25 to R1

Use register renaming to eliminate as many dependencies as possible.

Q.10. For thefollowing code sequence: (15)
L.D F6, 34(R2)

L.D F2, 45(R3)

MULT.D FO, F2, F4

SUB.D F8, F6, F2

DIV.D F10, FO, F6

ADD.D F6, F8, F2

Identify instruction pairs with all the RAW, WAR and WAW hazards.

Example 1: Instruction Flow ADD.D F6,F8,F251011-12 14

DIV.D F10,FO,F6 4 13 14-28 29

SUB.D F8,F6,F2367-89

MUL.D FO,F2,F426 7-11 12

L.DF2,45(R3)123-45L.DF6,34(R2)012-34

Instructions Issue RO Execute Write Back WAR -

Function unit latencies: FPADD = 2 cycles, FPMULT =5 cycles, FPDIV = 15 cycles, FPLOAD = 2 cycles, Integer = 1
cycle « Cannot read and write a register in the same cycle All units except FPDIV are pipelined

Q.9. Suppose a program running on a RISC machine performs 16,000,000 instructions during its execution. The total time it
takes to execute an instruction is 200 ns, independent of the clock cycle time. The total amount of work that needsto be
performed on each instruction isinfinitely divisible, so there may be any number of pipeline stages.

(15
a) Complete the table below by computing the stage time, total execution time, and speedup (relative to the non-pipelined
case) for the different pipelining depths. Ignore al hazards (i.e., assume ideal pipelining for this part). Neglect stage time
increases caused by pipeline register delays, etc., for this part.

Pipeline Depth Stagetime Total Execution Time Pipeline Speedup
1 200ns 32sec 1

2

4

8

b) Now suppose pipelining register delays and processor control overhead adds 10 ns to the latency of each pipeline stage.
(So, for example, if there are four pipeline stages, each instruction will have an execution latency of 240 ns and the
pipelined machine produces 1 instruction every 60 ns.) What is the maximum speedup that can be obtained through
pipelining? Assume there are no hazards (ideal pipelining).

39

¢) Now take into account stalls caused by hazards in the pipeline. Complete the table below using the average stall cycles
per instruction listed for each pipeline depth. Ignore stage time increases caused by pipeline register delays, control
overhead, etc., for this part.

Pipeline Depth Average # Stall Cycled/Instruction Stage Time Total Execution Time Pipeline Speedup
1 0.0 200ns 32sec 1

2 0.6

4 14

8 4.1

Q.10. Assume that registers R2, R3 and R4 storeinitial values of 200, 300 and 400 respectively. Also assume that

Mem[200] = 25, Mem[300] = Mem[400] = 50, Mem[500] = 100, Mem[596] = 40, Mem[600] = 200, Mem[700] = 100,
Mem[1000] = 150, Mem[1200] = 300, Mem[1600] = 400.

What value will be stored in register R1 and in R2 in each of the following cases: (10 Marks)
a ADD R1, R2,R3

b. ADD R2, R4, #15

C. ADD R1, R2, (R4)

d. ADD R2, R3, 100(R4)

e ADD R1, R2, @(600)

[Assume sequential execution with no pipelining. Each instruction is dependent upon the result of the previousinstructions.]
a b c d e f g h i |

R1 500 500 465 465 500 500 625 500 600 1000

R2 200 415 415 400 400 600 600 604 600 600

Q.13. Briefly define the following terms: 10
a. Pipelining

b. Instruction Cycle

c. Finite State Machine

d. Branch predication

e. Dynamic Scheduling

Q.15. Answer thefollowing (7+8)

a How the presence or absences of control hazard change the pipeline speedup?

Solution: This exercise asks, “How much faster would the machine be.. . .,” which should make you immediately think
speedup. In this case, we are interested in how the presence or absence of control hazards changes the pipeline speedup

b. How many bits are in the (0, 2) branch predicator with 4K entries? How many entriesare in a (2, 2) predicator with
the same number of bits?

Solution:

Q.16 In a 5-stages pipeline processor all instructions are not active in every stage of pipeline. If weignorethe effects
of hazards, which of following are correct and which are wrong? (5)
a) Allowing jumps, branches & ALU instruction to take fewer stages then the five required by the

performance under all circumstances.

b) Tryingto allow some instruction to take fewer cycles does not help, since throughput is determined by
clock cycles the No. of pipe stages for instruction effects latency not throughput.

c) Allowing jumps, branches and ALU operations to take fewer cycles only helps when no loads or stores are
in pipeline so benefits are small.

d) You cannot make ALU instruction take fewer cycles because of write back of results, but branches &
jumps can take fewer cycles so there is some opportunity of improvement

€) Instead of trying to make instruction take fewer cycles we should explore making pipeline longer,so that
instructions take more cycles ,but cycles are shorter, This could improve performance.

40

Q.12 Consider a branch-target buffer that has penalties of 0,2 and 2 clock cyclesfor correct conditional branch
predictionsin correct prediction and a buffer miss, respectively. Consider a brand-target buffer design that
distinguishes conditional and unconditional branches storing the target addresses for a conditional branch and the
target instructionsfor an unconditional branch. RR=2 (15)

a) What isthe penalty in clock cycles when an unconditional branch is found in the buffer?

b) Determine the improvement from branch folding for unconditional branches. Assume a 90% hit ratio an

unconditional (5marks)

Question No.17. For the following, assume that values A, B and C reside in memory. Also assume that instruction
operation codes are represented in 8 bits, memory addresses are 64 bits and register addresses are 6 hits.
a) For each instruction set architecture shown in the table below, how many addresses, or names, appear in each
instruction for the code to compute C = A+B and what is the total
b) codesize?

Stack Accumulator Register Register
(register-memory) (load-store)
Push A Load A Load R1, A Load R1, A
Push B Add B Add R3, R1, B Load R2, B
Add Store C StoreR3, C Add R3, R1, R2
Pop C StoreR3, C

TABLE: The code sequence for C = A + B for four classes of ingtruction sets.

Question No. 18. What isthe differ ence between branch and jump instruction. *15
a. What isthe impact of increasing the size of branch-prediction buffer on two branches in a program?
b. Consider aloop branch that branches nine times in a row, and then is not taken once. What is the prediction
accuracy for this branch, assuming the prediction bit for this branch remainsin the prediction buffer

