

Virtual University of Pakistan 1

P versus NP Problem

Safi Khan,

MS in Computer Sciences,
[Software Engineering]

Theory of computation,

Virtual University of Pakistan
Dated: 01-05-2016

Abstract:
There are still unsolvable problems in the computer science history known as P versus NP. The phenomena is that, is
the every given problem solve quickly by a computer program once it verified the solution of that given problem.
The matter posed in 1956 by Kurt Gödel while asking to John von Neumann in a written letter. The question was
arising is that, “whether a certain NP-complete problem could be solved in quadratic or linear time” [2]. In 1971
Stephen Cook one of the most senior computer scientist was introduced very first time the term, “P versus NP” in his
paper titled “The complexity of theorem proving procedure” [3]. That problem is considered as most important in
the computer science field [4], and prize for that solution is in US$1,000,000 announced by the Clay Mathematics
Institute.

The problem solved quickly by a computer program only when it solves the given problem in polynomial
time. That’s mean that there should be an algorithm exists that solve the given problem in polynomial time. If that
kind of an algorithm exists that solve the problem in polynomial time then that given problem is fall in “class P” or
some time just “P”. However there are some problems that do not fall in “class P” or in other words, not solve
“quickly” or “not in polynomial time” then it may be possible that the given answer by showing information, one it
can verify the answer “quickly” or “polynomial time”. That kind of problems falls in “class NP” because only the
answer of these questions can be verified in polynomial time. Where, NP stands for "nondeterministic polynomial
time".

The subset sum problem can be verified easily but it is very difficult to compute its answer. So that problem
can be checkable quickly (NP) but not quickly solvable (P). For example, there are a set of some integers and we
want to know is there any of the subset which has the sum of 0? In practically, if there is a set {-5, -10, -15, -20, -25,
50, 75, 100} and we quickly verify that there are two subset with the sum 0. First one is {-5, -10, -15, -20, 50}, and
the second one is {-5, -10, -15, -20, -25, 75}. When we add the integer of both these sets it will return the answer is
0. Both are quickly verified by adding some integers but there are not any known algorithms that can find these
kinds of subsets in polynomial time. But at the same time there may be an exponential time algorithm can be exists
if and only if when P =NP.

A problem that can be verified in polynomial time can also solved in polynomial time if P = NP. If it is not
then it termed as P ≠ NP, means that there are a problem that is in NP and it is easy to verify and hard to compute.
So that the given problem (subset sum problem) cannot be solved in polynomial time but its answer can be verified
in polynomial time. So the P versus NP is an important problem in history of computer science as well as in
computational theory, so the proof may be profound implication for cryptography, mathematics, artificial
intelligence, algorithm research, multimedia processing, economics, game theory, philosophy and many other
fields.

 1 – Introduction:
Computational theory defines the complexity
relation between the P and NP classes. The
resources those are required to solve the
computational problem are deals within theory
of computation. These resources are considered
as time and space. Time specifies the steps to
solve a particular problem and space deals with
the memory required to solve a particular
problem.

A computer model is required for such kind of
analysis which analyzed the required time.
These types of models are deterministic and
sequential. The deterministic models are those
are taking values as input and a present sate
and perform only one possible action that a
given computer might take. On the other hand,
the sequential models are those that can be
perform a single action one after the other.

Virtual University of Pakistan 2

A deterministic sequential machine solves those
decision problems that falls in class P, in
polynomial size of the input. Whereas the class
NP verified the solution of given decision
problems in polynomial time, or in other words
the solution of those problems in be found in
the polynomial time on a non-deterministic
machine [5]. Hence the P ⊆ NP and the
computational theory define the relationship
between these two classes. Is P = NP?

A poll of researcher was conduct in 2002 and
also in 2012 to answer that question, in which
many researchers was participates and replied
various answer [6]. The table in figure 1 below
shows the actual figures. The researcher those
are not certain about the possibility of prove or
disprove, believe that the question may be
independent of currently accepted axioms [7].

Year 2002 2012

No. of Researchers 100 151

Yes 9 12 (9%)

No 61 126 (83%)

Unsure 22 8 (5%)

Impossible to prove
or disprove

8 5 (3%)

Figure 1: The pool of researcher in 2002 and 2012

2 – NP – Complete:
The concept of NP-Complete is very useful in
order to find the solution of P = NP. All the NP-
problems which can be reduced in the
polynomial time fall in the set of NP-complete
problems, because the solution of these
problems can be verified in polynomial time. In
the set of NP-complete problem each problem
can be easily transform in any other problem,
hence all these problems are equally tough.
On the other hand, NP-hard problems are
equally hard then NP problems, and can be
reduced in polynomial time by NP problems.
There is no need to equate the NP-hard
problems with NP because there is no need to
verify them in polynomial time. Following figure
2 shows the relationship between the P, NP,
NP-complete, and NP-hard problems.

Figure 2: Euler diagram for P, NP, NP-complete, and

NP-hard set of problems

By the Cook-Levin theorem, the entire Boolean
satisfiability problem falls in the NP-complete
class. So if a problem in NP then it can be
mechanically transformed into Boolean
satisfiability problem in the polynomial time.
Hence, these Boolean satisfiability problems are
one of the NP-complete problems. The P = NP if
and only if the NP-complete problem is in P, but
there are a large number of problems that are
in NP-complete, and there are not any known
solution or algorithm for them.

If we examine clearly only on the definition
then we do not found obviously that the
problems of NP-complete are exist. However a
NP-complete problem can be formulated
trivially as: if we give a description of a Turing
machine M that guaranteed to be halt the
Turing machine in polynomial time, so the
question is that, is there any polynomial-size
input exists that M will accept[8]? Obviously,
this is in class NP because on given an input one
it can simply check via a simulation that M
accepts the input. It is also in NP-complete due
to the verifier of an instance for a problem that
is in NP, and one it can be encoded with
machine M in polynomial-time as an input and
verified the solution. So that instance is based
on valid input.

The Boolean satisfiability problem is the very
first NP-complete problem to be proven.
Actually this is the Cook-Levin theorem because
it’s proof that the satisfiability is the NP-
complete. The technical details which it

Virtual University of Pakistan 3

contains about the Turing machines can be
relate to the NP definition. In that way if we
reduce the other problem in Boolean
satisfiability problem than those problems are
also in NP-complete, i.e. subset sum problem. In
that way a large class of related problems can
be reduce to one another and treated as same
problem. The following figure 3 shows the
complexity relationship between these classes.
That figure shows that P ≠ NP, the problem
within class NP are clearly outside both the
classes of P and NP-complete, the Lander’s
theorem base on that assumption [1].

Figure 3: complexity relationship between the

classes.

3 – Harder problems:
Yet it is unknown that whether P = NP, but the
problems outside of P are known. There are a
small number of problems that are in EXPTIME-
complete. These kinds of problems are not
operating on the normal input; its input
requires the computational description. At the
same time these problems are treated as P ≠
EXPTIME, hence they are outside of class P,
because more than polynomial time is required
to solve them. In fact, if we examine the
theorem of time hierarchy then it can found
that these problems cannot be solved in less
than exponential time significantly. Board
games, i.e. chess (on the N x N board) [9] are
examples to find a perfect strategy [10].

On the other hand, the problems in Presburger
arithmetic statements requires more time to
finding the truth. Rabin and Fischer found in
1974 that the decision algorithm to known the
truth of Presburger statements requires 22^cn,
where c is some constant and the length of the
Presburger statement denoted by the n. Hence,
there are more than exponential run time is

required for known problem, and this run time
can be more critical in case of more difficult
problems, i.e. undecidable problems which are
known as halting problems. The algorithms
cannot be solved these problems completely
because there are a particular input of each
algorithm that produce the wrong answer or do
not produce right answer or it do not produce
the conclusive answer. Some time it may be run
forever and do not producing any right answer
at all.

4 – Problems in NP not known to be in P or NP-
complete:
Lander believes that if P ≠ NP then there are
some problems exists in NP that many not are
both in P and NP-complete [1]. These problems
known as the intermediate problems, the
example of NP-intermediate problems are;
discrete logarithm problems, isomorphism
problems and integer factorization problems.
However there are some problems in NP that
are still not known if it falls in class P or NP-
complete.

The graph isomorphism problem which is
known as computational problem basically are
used to determination weather two graphs are
isomorphic or not. That is the unsolved problem
in the theory of complexity. That is no known
whether the graph isomorphic problems in P,
NP-complete, or NP-intermediate. The scientist
sill not believes but they sure that the problem
in not in class NP-complete [11]. The hierarchy
of polynomial time is collapses to the second
level if the class NP-complete contains the
graph isomorphic problem [12] [13]. Sine at any
finite level the hierarchy of polynomial does not
collapse and at the same time the class NP-
complete do not contain the graph
isomorphism problems. For the graph that have
n vertices, Laszlo Babi and Eugene Lucks
denotes the run time 2O(√nlog(n)) as an best
algorithm.

Another computational problem that
determines the prime factorization of a given
integer is known as integer factorization

Virtual University of Pakistan 4

problem. Like the decision problem this
problem also is decided that if input has factor
less than k. Like RSA algorithm, that factor is
based on sever modern cryptographic system.
Although, still yet there are not any best known
integer factorization algorithm is exists. The
class NP and co-NP contains the integer
factorization problem, sometime known as UP
and co-UP [14]. The general number field sieve
is known as best integer factorization algorithm
and it takes the expected time to factor an n-bit
integer.

O(exp ((64n/9 log(2))1/3 (log(nlog(2)))2/3))

Shor’s algorithm is also known as best quantum
algorithm to solve that problem, does not run in
polynomial time. With respect to non-quantum
complexity classes that problem does not sure
about the problem where it is lies.

5 – Does P mean "easy"?
While reading the above discussion it is
assumed that the problems those are fall in
class P mean “easy”, and the problem those are
not fall in class P means as a “hard”, so these
assumptions known as Cobham’s thesis. Some
people or literatures known these assumptions
accurate reasonably in complexity theory but
some time it is assume that it has some caveats.
First of all in practical that is not true always
because a polynomial algorithm may have
theoretically a constant factors or exponents
which are extremely large and thus most of the
time it rendered as impractical. However, in
practice there may still some effective
approaches that can tackle the problem if it is in
NP-complete and even if P ≠ NP. For NP-
complete problems there are still many
algorithms that can be solve the many of real-
world problem in the reasonable amount of
time; such as traveling salesman problem,
Boolean satisfiability problem and knapsack
problem. For such kind of algorithms the
empirical average-case complexity (which is
based on time vs. problem size) can be very low
surprisingly. For instance the linear
programming the simplex algorithm that works

well in practice; however it have worst-case
time complexity exponentially but it known best
polynomial-time algorithms [16].

Second, some computation problems that do
not conforms the model of the Turing machine
in which the P and NP are defined; these
problems are as randomized algorithms as well
as quantum computation.

Figure 4: Time vs. problem size for knapsack

problem.

In the figure 4, the graph shows the 100
instances in ms which are using a 933 MHz
Pentium III, which is as a state-of-art specialized
algorithm of time vs. problem size for knapsack
problems. The empirical algorithmic complexity
which is suggests as quadratic fit for instances
with 50–10,000 variables is O((log(n))2).[15]

6 – Reasons to believe P ≠ NP:
Many computer scientists, according to the
polls held *6+*17+, believes the P ≠ NP. The
reason is that still now no one can find the
polynomial time algorithm, after a decades
studying, i.e. studying more than three
thousand NP-complete problems. These kinds
of algorithms were difficult to search before the
NP-complete concept. NP = co-NP and P = PH
were believed as false, so the P = NP result
startling then. The problems exist that are hard
to solve but the solutions of these problems are
easy for the verification also argued intuitively
to matches the real-world experience [18].

According to the Scott Aaronson, MIT:
“If P = NP, then the world would be a profoundly
different place than we usually assume it to be.

Virtual University of Pakistan 5

There would be no special value in "creative
leaps," no fundamental gap between solving a
problem and recognizing the solution once it's
found.”

At the same time some of the other researchers
believe that some researchers are
overconfident about the P ≠ NP believing and
they should try to explore the proof for P = NP.
Following statements were made in 2002 as [6]:

According to the Moshe Y. Vardi, Rice
University:

“The main argument in favor of P ≠ NP is the
total lack of fundamental progress in the area of
exhaustive search. This is, in my opinion, a very
weak argument. The space of algorithms is very
large and we are only at the beginning of its
exploration. [...] The resolution of Fermat's Last
Theorem also shows that very simple questions
may be settled only by very deep theories.”

According to the Anil Nerode, Cornell
University:

“Being attached to a speculation is not a good
guide to research planning. One should always
try both directions of every problem. Prejudice
has caused famous mathematicians to fail to
solve famous problems whose solution was
opposite to their expectations, even though they
had developed all the methods required.”

7 – Consequences of solution:
There are some factors that may attract the
consequences of answer; it may be either that
enormously the resolution direction would be
the advance theory or it may have huge
practical consequences as well.

7.1 – P = NP:
If we can solve important problems that belong
the NP then in that case the proof of P = NP is
practically best consequences. If somehow the
polynomial bounds are very large in practice
that are not efficient or the proof is not to be
constructive then in that case the proof possibly

no leads to an efficient methods. So both the
positive and negative consequences arise due
to these NP-complete problems which are
fundamental in nature in many of fields.

Cryptography which relies some of the certain
problem being difficult, 3-SAT which have
constructive as well as efficient algorithm break
down the cryptosystems such as;
• Public-key cryptography: that is the

foundation of most important security
application systems [19], i.e. financial
transaction on internet.

• Symmetric ciphers: i.e. AES or 3DES uses for
communication data encryption.

• Cryptographic hashing: it is a one way
function, i.e. find pre-image hashes to a
given value [21], sometime difficult to use
due to exponential time. Via reduction to
SAT then finding pre-image can done in
polynomial time if and only if P = NP [22].

There are some other positive consequences
that may be enormous and rendering
intractable problems mathematically. For
example a lot of problems in operation research
are NP-complete, i.e. travelling salesman
problem, integer programming. Efficient
solution for these kinds of problems is the
logistically implicated. A lot of other problems
like protein structure predication are also in NP-
complete [23]. If the solution of this problem
found efficiently than one it could be a
considerable advancement in the life of
biotechnology as well as science.

But at the same time such kind of changes may
less significant than the methods that
evolutionally efficient to solve the NP-complete
problems that would be cause in mathematics
itself. In the computational complexity the
Gödel thoughts the mechanical methods than
can be solved any problem would be
considerable revolution mathematics [24] [25].

The greatest important consequences where a
machine rely is φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2).
That’s mean it is the undecidability of

Virtual University of Pakistan 6

Entscheidungs problem, as the mathematician’s
mental work concern only on Yes or No
questions and this is replaced completely by a
machine. If we choose the natural number n is
so large, then one possibility is that the machine
does not provide the result that is it makes no
sense to think more about the problem.

Stephen Cook says:
“It would transform mathematics by allowing a
computer to find a formal proof of any theorem
which has a proof of a reasonable length, since
formal proofs can easily be recognized in
polynomial time. Example problems may well
include all of the CMI prize problems.” [26]

Mathematicians as well as the researchers
spend their life and careers to prove the
theorems. Some of the proofs took centuries to
resolves, i.e. Fermat’s Last Theorem took near
about three centuries to prove. The reasonable
size of the problem is main concern while
guarantee to proof a theorem.

A researcher Donald Knuth believes that the P =
NP but is reserved about the impact of the
possible proof *27+, “I don't believe that the
equality P = NP will turn out to be helpful even
if it is proved, because such a proof will almost
surely be non-constructive”.

7.2 – P ≠ NP:
The computational benefits that P = NP
provides is reduced by the proof of P ≠ NP, but
at the same time it provide the computational
advancement in the complexity theory as well
as guidance for future research. Formally it
shows that we cannot solve the common
problems efficiently. At that point the partial
solution becomes the attractive by the
researchers. So the believe-ness of P ≠ NP by a
lot of researchers is the result to focusing to
other similar problems [28].

So the focusing the average-case complexity
some of the harder problems in the class NP is
due to that believe-ness of P ≠ NP. SAT requires
the exponential time but on the other hand the

other instances that are selected randomly can
be solved efficiently. To deal with the question
of average-case complexity the Russell
Impagliazzo describes the five hypothetical
worlds that lead to the different possible
resolutions [29]. In this regard three ranges can
be defined as Algorithmica, Cryptomania,
Heuristica;

Algorithmica: In that case the P = NP and SAT
problems can be efficiently solved by all its
instances.

Cryptomania: In that case P ≠ NP and hard
instances of the problems that are generated
outside P is easy. Different possible distributions
of difficulty are reflecting the three possible
intermediate all over the instances of NP-hard
problems.

Heuristica: The "world" where P ≠ NP but at the
same time all possible problems in NP are
tractable in the average case, in the paper “A
Princeton University workshop in 2009 studied
the status of the five worlds” [30].

8 – Results about difficulty of proof:
Is the P = NP? This is however million dollar
prize, a huge amount offered to researcher
solve this problem, some efforts are made and
it have led to various other new approaches.
Some of the advance researches about the P
=NP show that the techniques that has already
existing are not enough and powerful which can
answer our question, so some of the novel
techniques are required.

The problem is really difficult, so the all known
proofing techniques essentially computational
complexity theory can be categorize in one of
the following class, however each of which is
failed to proof that P ≠ NP.

8.1 – Relativizing proofs:
Suppose a scenario in which each algorithm
made queries to a fixed subroutine called
oracle, and the running time of an algorithm in
not counted against the running time of oracle.

Virtual University of Pakistan 7

Most of the classical proofs can be apply
uniformly with the oracles regardless of what
the oracle does. These proofs are known as
relativizing. With the respect of oracle, in 1975
some researchers namely, Baker, Gill and
Solovay proof that P =NP, while P ≠ NP for other
oracles [31]. These relativizing proofs can prove
only uniformly true statements regard to oracle,
and that way it shows that the relativizing
techniques cannot be solve the P =NP.

8.2 – Natural proofs:
For the circuit complexity of lower bounds, a
general class of proving techniques is defined by
the Alexander Razborove and Steven Rudich in
1993, which is known as natural proof. This
circuit complexity approach was well known to
resolve the P = NP, since previously all known
circuit techniques of lower bounds were
natural. Both of the researcher shows that the
no method of natural proof can be distinguish
between P and NP, if one-way functions exist.
However, it never been proven that formally it
exist, however one it believe that they do by
most of the mathematicians. At the same time
the proof or disproof of their existence is much
stronger then quantification of P relative to NP.
So it is unlikely that these natural proofs can
alone resolve the P =NP.

8.3 – Algebrizing proofs:
Some result of Baker, Gill and Solovay shows
that newly techniques which are non-
relativizing can be successfully used to prove
that IP = PSPACE. Scott Aaronson and Avi
Wigderson in 2008 shows that some of the
technical tool which used to proof of IP =
PSPACE known as arithmetization was
insufficient also to resolve P = NP [32].

All of these barriers are another reason that
why the NP-complete problems are very useful.
If the demonstration of the polynomial-time
algorithm for these NP-complete problems than
one it could solve P = NP problem, including the
above result.

These are some massive barriers which leads to
computer scientists that P vs NP may be
independent in nature of standard axiom
system, i.e. ZFC which cannot be prove or
disprove. By examining these independent
result, one it conclude that there are no
polynomial-time algorithm exists for the NP-
complete problems, so the construction of the
proof is failed, i.e. ZFC, or if the polynomial-time
algorithm exists for NP-complete problem exists
but it is impossible to prove [33]. Using
technique of sort one it can be shown that the
problem is undecidable even with the weaker
assumption with extending the Peano axioms
(PA) for the integer arithmetic, then for every
NP problem the nearly-polynomial-time
algorithms exist [34]. However it is believes that
there are not efficient algorithms for the entire
problem in NP leads to the phenomena that
independence proof using those techniques
cannot be possible. This shows that using those
know techniques to prove the independence for
PA or ZFC are not easier than proving that the
efficient algorithms exists for all NP problems.

9 – Claimed solutions:
Some of the researcher claimed the solution of
unsolved problem of P vs NP [35]. A
comprehensive list is held by Gerhard J.
Woeginger [36]. Vinay Deolalikar and Palo Alto
also claimed the proof in August 2010 that P ≠
NP and they got heavy attention on the internet
and press [37]. Publicly this proof has been
reviewed by some academics [38][39] and an
expert Neil Immerman pointed out some of the
fatal error in that proof [40].

Deolalikar work in detail on that proof in
September 2010, [41] and the other studies
show by some of the theoretical computer
scientists that the proof is not correct nor have
any significant advancement to understand the
problem [42]. In 2013 the assessment is
prompted by The New Yorker article to call that
proof attempt thoroughly discredited [43].

Virtual University of Pakistan 8

10 – Logical characterizations:
Some of the certain classes which contain the
logical statements to measure the descriptive
complexity to restated the problem of P = NP.
For that all languages with the finite structures
is considered in a linear order relation. Then all
the classes which fall in the language P could be
express in 1st order logic with the some addition
of some suitable combinatory of fixed-point.
This combinational order allows the recursive
functions definition effectively. At least one
function or predicates contain by the signature
which additionally distinguished the order
relation. These kinds of functions take
polynomial space amount to store the finite
structures, characterizes as P.

The languages that are logically fall in 2nd order
in class NP. The functions, relations and subset
by the universal quantification are however
excluded in that 2nd order logic. As well as that
2nd order logic is related to all the languages
that are in polynomial hierarchy (PH). So the
question arises is that, is P which is a subset of
NP can be reformulated as; is the 2nd order logic
existentially able to describe the languages that
the 1st order logic cannot with the fixed point?
[44] That language is based on finite linearly
ordered structures with nontrivial signature. In
the previous characterization the word
“existential” can be dropped, sine P = NP ↔ P =
PH as we establish that NP = co-NP implies that
NP = PH.

11 – Polynomial time algorithms:
For the NP-complete problem there is no
polynomial time algorithm exists. However if P
= NP then the polynomial time algorithm for
NP-complete may be exists with some
enormous constant which make the algorithm
impractical. Levin represent the following
algorithm which accepts the NP-complete
SUBSET-SUM language correctly without any
citation in the polynomial time if and only if P =
NP.

The algorithm runs in polynomial time if it is
accepting, i.e. answer is “yes”. On the other

hand, if the answer is “no” the algorithm runs
forever. If P = NP then the algorithm is
enormously impractical. The algorithm try to
other programs first at least in 2b – 1 if a short
program that can be solve the SUBSET-SUM in
the polynomial time if it is b bits long.
// Algorithm that accepts the NP-complete
language SUBSET-SUM. This is a polynomial-
time algorithm if and only if P = NP.
"Polynomial-time" means it returns "yes" in
polynomial time when the answer should be
"yes", and runs forever when it is "no"
// Input: S = a finite set of integers
// Output: "yes" if any subset of S adds up to 0.
// Runs forever with no output otherwise.
// Note: "Program number P" is the program
obtained by
// writing the integer P in binary, then
// considering that string of bits to be a
// program. Every possible program can be
// generated this way, though most do nothing
// because of syntax errors.

FOR N = 1...∞
 FOR P = 1...N
 Run program number P for N steps with input
S
 IF the program outputs a list of distinct
integers
 AND the integers are all in S
 AND the integers sum to 0
 THEN
 OUTPUT "yes" and HALT

12 – Formal Definition:
The formal definition contains the following
points.

12.1 – P and NP:
A decision problem takes string ‘w’ as an input
from an alphabet Σ and output the Boolean
value, i.e. “yes” or “no”. If there are a TM, i.e.
an algorithm that takes the input string of
length n and produce the answer correctly at
most cnk steps (k and c both are constant and
independent of the input string), then one can
guess that the problem can be solved in the
polynomial time that fall in class P (set of the

Virtual University of Pakistan 9

languages which can be decided by a
deterministic polynomial time TM.

P = {  :L L L M for some deterministic

polynomial-time Turing machine M}

Where    *: M accepts wL M w 

Hence, a deterministic polynomial-time TM is a
deterministic TM M that satisfies the
conditions;
1. M halts on all input w

2. k n Such that    k

MT n O n ; here O refers

to big O notation and,

    max : *,| |M MT n t w W w n  

 Mt w = number of steps M takes to halt on

input w

NP can be defined traditionally by
nondeterministic TM. The major concepts of
certificate and verifier can be used to define the
NP in modern way. Verifiers in form of set of
languages contain the finite alphabet is used to
defined NP formally which runs in polynomial
time. The notion of verifier is defined as:

Let L be a language over a finite alphabet, Σ.

L ∈ NP if, and only if, there exist a binary
relation * *R    and a positive integer k

such that the following two conditions are
satisfied:

1. For all *, *x x L y     such that

 ,x y R and    ,
k

x y R y O x 

2. The language   # : ,RL x y x y R  over

 # is decidable by a TM in

polynomial time.

LR is the verifier for L of the TM, where y is the

certificate such that  ,x y R . In that case the

verifier does not have the polynomial time, but
verifier should be run in polynomial time for the
L to be in NP.

12.1.1 – Example:
For example let;

 | pq for integers p,q > 1COMPOSITE x N x  

  , |1 and y divides xR x y N N y x    

The question is that if x is composite is same as
if x is member of composite, where COMPOSITE
∈ NP by the definition of the verifier satisfying
the definition narrated above. This can be done
only if the natural numbers can be identifying
via binary representations. However via [45]
[46] COMPOSITE can also be happened in P.

12.2 – NP-completeness:
There are many ways for describing the
concepts of NP-completeness.
Let L be a language over a finite alphabet 

The following two conditions should be satisfied
to prove that L in NP-complete.
1. L NP

2. 'L in NP is polynomial time reducible to L as
'

pL L if and only if following two

conditions satisfied.
a. There exists : * *f   such that for all

w in * we have:

  ': * *f w L f w L    

b. There exists a polynomial-time TM that

halts with  f w on its tape on any input w

13 – Conclusion:
The entire problems that falls in NP-
completeness have some order parameter (at
least one), and some time hard to solve due to
those critical values that are near around to the
order parameter. Separation of a region from
one to other is performed by those critical
values such as over and under constrained
regions of the problem space. In that situation
the transition in phase occurs 0 to 1 due to
change in solution probability. However the
phase transition does not arise in P problems
unless it arises to bounded N, so it has bounded
cost.

Virtual University of Pakistan 10

For the particular problem process I have
provide the conjectures as empirical evidence. I
also show that one hard problem in one space
can be map to another hard problem in the
other space. In that way preserve the phase
boundary under the mapping. I have also shown
some of the cases where P and NP classes have
the distinction and also show that how the P
classes was excluded from the critical region.

In that cases where the conjectures are true,
then an NP problem turn into the P problem
adding some restrictions excluding the order
parameter of the critical values.

Note that only the reduced problems carry
these results explaining why not these results
previously noticed particularly. So there are a
lot of outstanding question arises, such that:
1. What happened with NP-hard problems?
2. Is there any situation where the hard

problem occurs in the non-critical region?
3. Do the other types of problems, i.e. games,

optimization problems, etc. have the same
properties?

14 – References:
[1] R. E. Ladner "On the structure of polynomial

time reducibility," Journal of the ACM, 22, pp.
151–171, 1975. Corollary 1.1.

[2] Hartmanis, Juris. "Gödel, von Neumann, and the
P = NP problem" (PDF). Bulletin of the European
Association for Theoretical Computer Science
38: 101–107.

[3] Cook, Stephen (1971). "The complexity of
theorem proving procedures". Proceedings of
the Third Annual ACM Symposium on Theory of
Computing. pp. 151–158.

[4] Fortnow, Lance (2009). "The status of the P
versus NP problem" (PDF). Communications of
the ACM 52 (9): 78–86.
doi:10.1145/1562164.1562186.

[5] Sipser, Michael: Introduction to the Theory of
Computation, Second Edition, International
Edition, page 270. Thomson Course Technology,
2006. Definition 7.19 and Theorem 7.20.

[6] William I. Gasarch (June 2002). "The P=?NP
poll." (PDF). SIGACT News 33 (2): 34–47.
doi:10.1145/1052796.1052804. Retrieved 29
December 2008.

[7] William I. Gasarch. "The Second P=?NP poll"
(PDF). SIGACT News 74.

[8] Scott Aaronson. "PHYS771 Lecture 6: P, NP, and
Friends". Retrieved 27 August 2007.

[9] Aviezri Fraenkel and D. Lichtenstein (1981).
"Computing a perfect strategy for n×n chess
requires time exponential in n". J. Comb. Th. A
(31): 199–214.

[10] David Eppstein. "Computational Complexity of
Games and Puzzles"

[11] Arvind, Vikraman; Kurur, Piyush P. (2006).
"Graph isomorphism is in SPP". Information and
Computation 204 (5): 835–852.

[12] Schöning, Uwe. "Graph isomorphism is in the
low hierarchy". Proceedings of the 4th Annual
Symposium on Theoretical Aspects of Computer
Science 1987: 114–124.

[13] Schöning, Uwe (1988). "Graph isomorphism is in
the low hierarchy". Journal of Computer and
System Sciences 37: 312–323.

[14] Lance Fortnow. Computational Complexity Blog:
Complexity Class of the Week: Factoring. 13
September 2002.

[15] Pisinger, D. 2003. "Where are the hard knapsack
problems?" Technical Report 2003/08,
Department of Computer Science, University of
Copenhagen, Copenhagen, Denmark

[16] Gondzio, Jacek; Terlaky, Tamás (1996). "3 A
computational view of interior point methods".
In J. E. Beasley. Advances in linear and integer
programming. Oxford Lecture Series in
Mathematics and its Applications 4. New York:
Oxford University Press. pp. 103–144. MR
1438311. Postscript file at website of Gondzio
and at McMaster University website of Terlaky

[17] Rosenberger, Jack (May 2012). "P vs. NP poll
results". Communications of the ACM 55 (5): 10.

[18] Scott Aaronson. "Reasons to believe". point 9.
[19] See Horie, S. and Watanabe, O.; Watanabe

(1997). "Hard instance generation for SAT".
Algorithms and Computation. Lecture Notes in
Computer Science (Springer) 1350: 22–31.
arXiv:cs/9809117. Bibcode:1998cs........9117H.
doi:10.1007/3-540-63890-3_4. ISBN 978-3-540-
63890-2. for a reduction of factoring to SAT. A
512 bit factoring problem (8400 MIPS-years
when factored) translates to a SAT problem of
63,652 variables and 406,860 clauses.

[20] See, for example, Massacci, F. and Marraro, L.
(2000). "Logical cryptanalysis as a SAT problem".
Journal of Automated Reasoning (Springer) 24
(1): 165–203. doi:10.1023/A:1006326723002.
CiteSeerX: 10.1.1.104.962. in which an instance

Virtual University of Pakistan 11

of DES is encoded as a SAT problem with 10336
variables and 61935 clauses. A 3DES problem
instance would be about 3 times this size.

[21] Find a messageM that when hashed by the
function H() gives a digest h, or H(M)=h

[22] De, Debapratim and Kumarasubramanian,
Abishek and Venkatesan, Ramarathnam (2007).
"Inversion attacks on secure hash functions
using SAT solvers". Springer. pp. 377–382.

[23] Berger B, Leighton T (1998). "Protein folding in
the hydrophobic-hydrophilic (HP) model is NP-
complete". J. Comput. Biol. 5 (1): 27–40.
doi:10.1089/cmb.1998.5.27. PMID 9541869.

[24] History of this letter and its translation from
Michael Sipser. "The History and Status of the P
versus NP question"

[25] David S. Johnson. "A Brief History of NP-
Completeness, 1954–2012" (PDF). From pages
359–376 of Optimization Stories, M. Grötschel
(editor), a special issue of ¨ Documenta
Mathematica, published in August 2012 and
distributed to attendees at the 21st
International Symposium on Mathematical
Programming in Berlin.

[26] Cook, Stephen (April 2000). "The P versus NP
Problem" (PDF). Clay Mathematics Institute.
Retrieved 18 October 2006.

[27] Knuth, Donald E. (May 20, 2014). "Twenty
Questions for Donald Knuth". informit.com.
InformIT. Retrieved 20 July 2014.

[28] L. R. Foulds (October 1983). "The Heuristic
Problem-Solving Approach". Journal of the
Operational Research Society 34 (10): 927–934.
doi:10.2307/2580891. JSTOR 2580891

[29] R. Impagliazzo, "A personal view of average-case
complexity," sct, pp.134, 10th Annual Structure
in Complexity Theory Conference (SCT'95), 1995

[30] "Tentative program for the workshop on
"Complexity and Cryptography: Status of
Impagliazzo's Worlds"". Archived from the
original on 2013-11-15.

[31] T. P. Baker, J. Gill, R. Solovay. Relativizations of
the P =? NP Question. SIAM Journal on
Computing, 4(4): 431–442 (1975)

[32] S. Aaronson and A. Wigderson (2008).
Algebrization: A New Barrier in Complexity
Theory (PDF). Proceedings of ACM STOC'2008.
pp. 731–740. doi:10.1145/1374376.1374481.

[33] Aaronson, Scott. "Is P Versus NP Formally
Independent?"

[34] Ben-David, Shai; Halevi, Shai (1992). "On the
independence of P versus NP". Technical Report
714. Technion.

[35] John Markoff (8 October 2009). "Prizes Aside,
the P-NP Puzzler Has Consequences". The New
York Times.

[36] Gerhard J. Woeginger. "The P-versus-NP page".
Retrieved 25 May 2014.

[37] Markoff, John (16 August 2010). "Step 1: Post
Elusive Proof. Step 2: Watch Fireworks.". The
New York Times. Retrieved 20 September 2010.

[38] Polymath Project wiki. "Deolalikar's P vs NP
paper"

[39] Science News, "Crowdsourcing peer review"
[40] Dick Lipton (12 August 2010). "Fatal Flaws in

Deolalikar's Proof?"
[41] Dick Lipton (15 September 2010). "An Update

on Vinay Deolalikar's Proof". Retrieved 31
December 2010

[42] Gödel’s Lost Letter and P=NP, Update on
Deolalikar’s Proof that P≠NP

[43] Alexander Nazaryan (2 May 2013). "A Most
Profound Math Problem". Retrieved 1 May 2014

[44] Elvira Mayordomo. "P versus NP" Monografías
de la Real Academia de Ciencias de Zaragoza 26:
57–68 (2004)

[45] M. Agrawal, N. Kayal, N. Saxena. "Primes is in P"
(PDF). Retrieved 29 December 2008

[46] AKS primality test

[47] Geere, Duncan. "'Travelling Salesman'
movie considers the repercussions if P
equals NP". Wired. Retrieved 26 April 2012

