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Abstract: 
There are still unsolvable problems in the computer science history known as P versus NP. The phenomena is that, is
the every given problem solve quickly by a computer program once it verified the solution of that given problem. 
The matter posed in 1956 by Kurt Gödel while asking to John von Neumann in a written letter. The question was 
arising is that, “whether a certain NP-complete problem could be solved in quadratic or linear time” [2]. In 1971 
Stephen Cook one of the most senior computer scientist was introduced very first time the term, “P versus NP” in his 
paper titled “The complexity of theorem proving procedure” [3]. That problem is considered as most important in 
the computer science field [4], and prize for that solution is in US$1,000,000 announced by the Clay Mathematics 
Institute.  

The problem solved quickly by a computer program only when it solves the given problem in polynomial 
time. That’s mean that there should be an algorithm exists that solve the given problem in polynomial time. If that 
kind of an algorithm exists that solve the problem in polynomial time then that given problem is fall in “class P” or 
some time just “P”. However there are some problems that do not fall in “class P” or in other words, not solve 
“quickly” or “not in polynomial time” then it may be possible that the given answer by showing information, one it 
can verify the answer “quickly” or “polynomial time”. That kind of problems falls in “class NP” because only the 
answer of these questions can be verified in polynomial time. Where, NP stands for "nondeterministic polynomial 
time". 

The subset sum problem can be verified easily but it is very difficult to compute its answer. So that problem 
can be checkable quickly (NP) but not quickly solvable (P). For example, there are a set of some integers and we 
want to know is there any of the subset which has the sum of 0? In practically, if there is a set {-5, -10, -15, -20, -25, 
50, 75, 100} and we quickly verify that there are two subset with the sum 0. First one is {-5, -10, -15, -20, 50}, and 
the second one is {-5, -10, -15, -20, -25, 75}. When we add the integer of both these sets it will return the answer is 
0. Both are quickly verified by adding some integers but there are not any known algorithms that can find these 
kinds of subsets in polynomial time. But at the same time there may be an exponential time algorithm can be exists 
if and only if when P =NP. 

A problem that can be verified in polynomial time can also solved in polynomial time if P = NP. If it is not 
then it termed as P ≠ NP, means that there are a problem that is in NP and it is easy to verify and hard to compute. 
So that the given problem (subset sum problem) cannot be solved in polynomial time but its answer can be verified 
in polynomial time. So the P versus NP is an important problem in history of computer science as well as in 
computational theory, so the proof may be profound implication for cryptography, mathematics, artificial 
intelligence, algorithm research, multimedia processing, economics, game theory, philosophy and many other 
fields. 
 

 1 – Introduction:  
Computational theory defines the complexity 
relation between the P and NP classes. The 
resources those are required to solve the 
computational problem are deals within theory 
of computation. These resources are considered 
as time and space. Time specifies the steps to 
solve a particular problem and space deals with 
the memory required to solve a particular 
problem.  

A computer model is required for such kind of 
analysis which analyzed the required time. 
These types of models are deterministic and 
sequential. The deterministic models are those 
are taking values as input and a present sate 
and perform only one possible action that a 
given computer might take. On the other hand, 
the sequential models are those that can be 
perform a single action one after the other.  
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A deterministic sequential machine solves those 
decision problems that falls in class P, in 
polynomial size of the input. Whereas the class 
NP verified the solution of given decision 
problems in polynomial time, or in other words 
the solution of those problems in be found in 
the polynomial time on a non-deterministic 
machine [5].  Hence the P ⊆ NP and the 
computational theory define the relationship 
between these two classes.  Is P = NP? 
 
A poll of researcher was conduct in 2002 and 
also in 2012 to answer that question, in which 
many researchers was participates and replied 
various answer [6]. The table in figure 1 below 
shows the actual figures. The researcher those 
are not certain about the possibility of prove or 
disprove, believe that the question may be 
independent of currently accepted axioms [7].   
 

Year 2002 2012 

No. of Researchers 100 151 

Yes 9 12 (9%) 

No 61 126 (83%) 

Unsure 22 8 (5%) 

Impossible to prove 
or disprove 

8 5 (3%) 

Figure 1: The pool of researcher in 2002 and 2012 
 
2 – NP – Complete: 
The concept of NP-Complete is very useful in 
order to find the solution of P = NP. All the NP-
problems which can be reduced in the 
polynomial time fall in the set of NP-complete 
problems, because the solution of these 
problems can be verified in polynomial time. In 
the set of NP-complete problem each problem 
can be easily transform in any other problem, 
hence all these problems are equally tough.   
On the other hand, NP-hard problems are 
equally hard then NP problems, and can be 
reduced in polynomial time by NP problems. 
There is no need to equate the NP-hard 
problems with NP because there is no need to 
verify them in polynomial time. Following figure 
2 shows the relationship between the P, NP, 
NP-complete, and NP-hard problems. 
 

 
Figure 2: Euler diagram for P, NP, NP-complete, and 

NP-hard set of problems 

 
By the Cook-Levin theorem, the entire Boolean 
satisfiability problem falls in the NP-complete 
class. So if a problem in NP then it can be 
mechanically transformed into Boolean 
satisfiability problem in the polynomial time. 
Hence, these Boolean satisfiability problems are 
one of the NP-complete problems. The P = NP if 
and only if the NP-complete problem is in P, but 
there are a large number of problems that are 
in NP-complete, and there are not any known 
solution or algorithm for them. 
 
If we examine clearly only on the definition 
then we do not found obviously that the 
problems of NP-complete are exist. However a 
NP-complete problem can be formulated 
trivially as: if we give a description of a Turing 
machine M that guaranteed to be halt the 
Turing machine in polynomial time, so the 
question is that, is there any polynomial-size 
input exists that M will accept[8]? Obviously, 
this is in class NP because on given an input one 
it can simply check via a simulation that M 
accepts the input. It is also in NP-complete due 
to the verifier of an instance for a problem that 
is in NP, and one it can be encoded with 
machine M in polynomial-time as an input and 
verified the solution. So that instance is based 
on valid input. 
 
The Boolean satisfiability problem is the very 
first NP-complete problem to be proven. 
Actually this is the Cook-Levin theorem because 
it’s proof that the satisfiability is the NP-
complete. The technical details which it 
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contains about the Turing machines can be 
relate to the NP definition. In that way if we 
reduce the other problem in Boolean 
satisfiability problem than those problems are 
also in NP-complete, i.e. subset sum problem. In 
that way a large class of related problems can 
be reduce to one another and treated as same 
problem. The following figure 3 shows the 
complexity relationship between these classes. 
That figure shows that P ≠ NP, the problem 
within class NP are clearly outside both the 
classes of P and NP-complete, the Lander’s 
theorem base on that assumption [1].  
 

 
Figure 3: complexity relationship between the 

classes. 

 
3 – Harder problems: 
Yet it is unknown that whether P = NP, but the 
problems outside of P are known. There are a 
small number of problems that are in EXPTIME-
complete. These kinds of problems are not 
operating on the normal input; its input 
requires the computational description. At the 
same time these problems are treated as P ≠ 
EXPTIME, hence they are outside of class P, 
because more than polynomial time is required 
to solve them. In fact, if we examine the 
theorem of time hierarchy then it can found 
that these problems cannot be solved in less 
than exponential time significantly. Board 
games, i.e. chess (on the N x N board) [9] are 
examples to find a perfect strategy [10].  
 
On the other hand, the problems in Presburger 
arithmetic statements requires more time to 
finding the truth. Rabin and Fischer found in 
1974 that the decision algorithm to known the 
truth of Presburger statements requires 22^cn, 
where c is some constant and the length of the 
Presburger statement denoted by the n. Hence, 
there are more than exponential run time is 

required for known problem, and this run time 
can be more critical in case of more difficult 
problems, i.e. undecidable problems which are 
known as halting problems. The algorithms 
cannot be solved these problems completely 
because there are a particular input of each 
algorithm that produce the wrong answer or do 
not produce right answer or it do not produce 
the conclusive answer. Some time it may be run 
forever and do not producing any right answer 
at all.  
 
4 – Problems in NP not known to be in P or NP-
complete: 
Lander believes that if P ≠ NP then there are 
some problems exists in NP that many not are 
both in P and NP-complete [1]. These problems 
known as the intermediate problems, the 
example of NP-intermediate problems are; 
discrete logarithm problems, isomorphism 
problems and integer factorization problems. 
However there are some problems in NP that 
are still not known if it falls in class P or NP-
complete. 
 
The graph isomorphism problem which is 
known as computational problem basically are 
used to determination weather two graphs are 
isomorphic or not. That is the unsolved problem 
in the theory of complexity. That is no known 
whether the graph isomorphic problems in P, 
NP-complete, or NP-intermediate. The scientist 
sill not believes but they sure that the problem 
in not in class NP-complete [11]. The hierarchy 
of polynomial time is collapses to the second 
level if the class NP-complete contains the 
graph isomorphic problem [12] [13]. Sine at any 
finite level the hierarchy of polynomial does not 
collapse and at the same time the class NP-
complete do not contain the graph 
isomorphism problems. For the graph that have 
n vertices, Laszlo Babi and Eugene Lucks 
denotes the run time 2O(√nlog(n)) as an best 
algorithm. 
 
Another computational problem that 
determines the prime factorization of a given 
integer is known as integer factorization 
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problem. Like the decision problem this 
problem also is decided that if input has factor 
less than k. Like RSA algorithm, that factor is 
based on sever modern cryptographic system. 
Although, still yet there are not any best known 
integer factorization algorithm is exists. The 
class NP and co-NP contains the integer 
factorization problem, sometime known as UP 
and co-UP [14]. The general number field sieve 
is known as best integer factorization algorithm 
and it takes the expected time to factor an n-bit 
integer. 
 

O(exp ((64n/9 log(2))1/3 (log(nlog(2)))2/3 )) 
 
Shor’s algorithm is also known as best quantum 
algorithm to solve that problem, does not run in 
polynomial time. With respect to non-quantum 
complexity classes that problem does not sure 
about the problem where it is lies.  
 
5 – Does P mean "easy"? 
While reading the above discussion it is 
assumed that the problems those are fall in 
class P mean “easy”, and the problem those are 
not fall in class P means as a “hard”, so these 
assumptions known as Cobham’s thesis. Some 
people or literatures known these assumptions 
accurate reasonably in complexity theory but 
some time it is assume that it has some caveats.  
First of all in practical that is not true always 
because a polynomial algorithm may have 
theoretically a constant factors or exponents 
which are extremely large and thus most of the 
time it rendered as impractical. However, in 
practice there may still some effective 
approaches that can tackle the problem if it is in 
NP-complete and even if P ≠ NP. For NP-
complete problems there are still many 
algorithms that can be solve the many of real-
world problem in the reasonable amount of 
time; such as traveling salesman problem, 
Boolean satisfiability problem and knapsack 
problem. For such kind of algorithms the 
empirical average-case complexity (which is 
based on time vs. problem size) can be very low 
surprisingly. For instance the linear 
programming the simplex algorithm that works 

well in practice; however it have worst-case 
time complexity exponentially but it known best 
polynomial-time algorithms [16].  
 
Second, some computation problems that do 
not conforms the model of the Turing machine 
in which the P and NP are defined; these 
problems are as randomized algorithms as well 
as quantum computation.  
 

 
Figure 4: Time vs. problem size for knapsack 

problem. 
 
In the figure 4, the graph shows the 100 
instances in ms which are using a 933 MHz 
Pentium III, which is as a state-of-art specialized 
algorithm of time vs. problem size for knapsack 
problems. The empirical algorithmic complexity 
which is suggests as quadratic fit for instances 
with 50–10,000 variables is O((log(n))2).[15] 

 
6 – Reasons to believe P ≠ NP: 
Many computer scientists, according to the 
polls held *6+*17+, believes the P ≠ NP. The 
reason is that still now no one can find the 
polynomial time algorithm, after a decades 
studying, i.e. studying more than three 
thousand NP-complete problems. These kinds 
of algorithms were difficult to search before the 
NP-complete concept. NP = co-NP and P = PH 
were believed as false, so the P = NP result 
startling then. The problems exist that are hard 
to solve but the solutions of these problems are 
easy for the verification also argued intuitively 
to matches the real-world experience [18]. 
 
According to the Scott Aaronson, MIT: 
“If P = NP, then the world would be a profoundly 
different place than we usually assume it to be. 
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There would be no special value in "creative 
leaps," no fundamental gap between solving a 
problem and recognizing the solution once it's 
found.” 
 
At the same time some of the other researchers 
believe that some researchers are 
overconfident about the P ≠ NP believing and 
they should try to explore the proof for P = NP. 
Following statements were made in 2002 as [6]: 
 
According to the Moshe Y. Vardi, Rice 
University: 
 
“The main argument in favor of P ≠ NP is the 
total lack of fundamental progress in the area of 
exhaustive search. This is, in my opinion, a very 
weak argument. The space of algorithms is very 
large and we are only at the beginning of its 
exploration. [...] The resolution of Fermat's Last 
Theorem also shows that very simple questions 
may be settled only by very deep theories.” 
 
According to the Anil Nerode, Cornell 
University: 
 
“Being attached to a speculation is not a good 
guide to research planning. One should always 
try both directions of every problem. Prejudice 
has caused famous mathematicians to fail to 
solve famous problems whose solution was 
opposite to their expectations, even though they 
had developed all the methods required.” 
 
7 – Consequences of solution: 
There are some factors that may attract the 
consequences of answer; it may be either that 
enormously the resolution direction would be 
the advance theory or it may have huge 
practical consequences as well. 
 
7.1 – P = NP: 
If we can solve important problems that belong 
the NP then in that case the proof of P = NP is 
practically best consequences. If somehow the 
polynomial bounds are very large in practice 
that are not efficient or the proof is not to be 
constructive then in that case the proof possibly 

no leads to an efficient methods. So both the 
positive and negative consequences arise due 
to these NP-complete problems which are 
fundamental in nature in many of fields.  
 
Cryptography which relies some of the certain 
problem being difficult, 3-SAT which have 
constructive as well as efficient algorithm break 
down the cryptosystems such as; 
• Public-key cryptography: that is the 

foundation of most important security 
application systems [19], i.e. financial 
transaction on internet. 

• Symmetric ciphers: i.e. AES or 3DES uses for 
communication data encryption. 

• Cryptographic hashing: it is a one way 
function, i.e. find pre-image hashes to a 
given value [21], sometime difficult to use 
due to exponential time. Via reduction to 
SAT then finding pre-image can done in 
polynomial time if and only if P = NP [22]. 

 
There are some other positive consequences 
that may be enormous and rendering 
intractable problems mathematically. For 
example a lot of problems in operation research 
are NP-complete, i.e. travelling salesman 
problem, integer programming. Efficient 
solution for these kinds of problems is the 
logistically implicated. A lot of other problems 
like protein structure predication are also in NP-
complete [23]. If the solution of this problem 
found efficiently than one it could be a 
considerable advancement in the life of 
biotechnology as well as science.  
 
But at the same time such kind of changes may 
less significant than the methods that 
evolutionally efficient to solve the NP-complete 
problems that would be cause in mathematics 
itself. In the computational complexity the 
Gödel thoughts the mechanical methods than 
can be solved any problem would be 
considerable revolution mathematics [24] [25].   
 
The greatest important consequences where a 
machine rely is φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2). 
That’s mean it is the undecidability  of 
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Entscheidungs problem, as the mathematician’s 
mental work concern only on Yes or No 
questions and this is replaced completely by a 
machine. If we choose the natural number n is 
so large, then one possibility is that the machine 
does not provide the result that is it makes no 
sense to think more about the problem.  
 
Stephen Cook says: 
“It would transform mathematics by allowing a 
computer to find a formal proof of any theorem 
which has a proof of a reasonable length, since 
formal proofs can easily be recognized in 
polynomial time. Example problems may well 
include all of the CMI prize problems.” [26] 
 
Mathematicians as well as the researchers 
spend their life and careers to prove the 
theorems. Some of the proofs took centuries to 
resolves, i.e. Fermat’s Last Theorem took near 
about three centuries to prove. The reasonable 
size of the problem is main concern while 
guarantee to proof a theorem.  
 
A researcher Donald Knuth believes that the P = 
NP but is reserved about the impact of the 
possible proof *27+, “I don't believe that the 
equality P = NP will turn out to be helpful even 
if it is proved, because such a proof will almost 
surely be non-constructive”. 
 
7.2 – P ≠ NP: 
The computational benefits that P = NP 
provides is reduced by the proof of P ≠ NP, but 
at the same time it provide the computational 
advancement in the complexity theory as well 
as guidance for future research. Formally it 
shows that we cannot solve the common 
problems efficiently. At that point the partial 
solution becomes the attractive by the 
researchers. So the believe-ness of P ≠ NP by a 
lot of researchers is the result to focusing to 
other similar problems [28].  
 
So the focusing the average-case complexity 
some of the harder problems in the class NP is 
due to that believe-ness of P ≠ NP. SAT requires 
the exponential time but on the other hand the 

other instances that are selected randomly can 
be solved efficiently. To deal with the question 
of average-case complexity the Russell 
Impagliazzo describes the five hypothetical 
worlds that lead to the different possible 
resolutions [29]. In this regard three ranges can 
be defined as Algorithmica, Cryptomania, 
Heuristica; 
 
Algorithmica: In that case the P = NP and SAT 
problems can be efficiently solved by all its 
instances. 
 
Cryptomania: In that case P ≠ NP and hard 
instances of the problems that are generated 
outside P is easy. Different possible distributions 
of difficulty are reflecting the three possible 
intermediate all over the instances of NP-hard 
problems.  
 
Heuristica: The "world" where P ≠ NP but at the 
same time all possible problems in NP are 
tractable in the average case, in the paper “A 
Princeton University workshop in 2009 studied 
the status of the five worlds” [30]. 
 
8 – Results about difficulty of proof: 
Is the P = NP? This is however million dollar 
prize, a huge amount offered to researcher 
solve this problem, some efforts are made and 
it have led to various other new approaches. 
Some of the advance researches about the P 
=NP show that the techniques that has already 
existing are not enough and powerful which can 
answer our question, so some of the novel 
techniques are required. 
 
The problem is really difficult, so the all known 
proofing techniques essentially computational 
complexity theory can be categorize in one of 
the following class, however each of which is 
failed to proof that  P ≠ NP. 
 
8.1 – Relativizing proofs: 
Suppose a scenario in which each algorithm 
made queries to a fixed subroutine called 
oracle, and the running time of an algorithm in 
not counted against the running time of oracle. 
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Most of the classical proofs can be apply 
uniformly with the oracles regardless of what 
the oracle does. These proofs are known as 
relativizing. With the respect of oracle, in 1975 
some researchers namely, Baker, Gill and 
Solovay proof that P =NP, while P ≠ NP for other 
oracles [31]. These relativizing proofs can prove 
only uniformly true statements regard to oracle, 
and that way it shows that the relativizing 
techniques cannot be solve the P =NP. 
 
8.2 – Natural proofs: 
For the circuit complexity of lower bounds, a 
general class of proving techniques is defined by 
the Alexander Razborove and Steven Rudich in 
1993, which is known as natural proof. This 
circuit complexity approach was well known to 
resolve the P = NP, since previously all known 
circuit techniques of lower bounds were 
natural.  Both of the researcher shows that the 
no method of natural proof can be distinguish 
between P and NP, if one-way functions exist. 
However, it never been proven that formally it 
exist, however one it believe that they do by 
most of the mathematicians. At the same time 
the proof or disproof of their existence is much 
stronger then quantification of P relative to NP. 
So it is unlikely that these natural proofs can 
alone resolve the P =NP. 
 
8.3 – Algebrizing proofs: 
Some result of Baker, Gill and Solovay shows 
that newly techniques which are non-
relativizing can be successfully used to prove 
that IP = PSPACE. Scott Aaronson and Avi 
Wigderson in 2008 shows that some of the 
technical tool which used to proof of IP = 
PSPACE known as arithmetization was 
insufficient also to resolve P = NP [32]. 
 
All of these barriers are another reason that 
why the NP-complete problems are very useful. 
If the demonstration of the polynomial-time 
algorithm for these NP-complete problems than 
one it could solve P = NP problem, including the 
above result.  
 

These are some massive barriers which leads to 
computer scientists that P vs NP may be 
independent in nature of standard axiom 
system, i.e. ZFC which cannot be prove or 
disprove. By examining these independent 
result, one it conclude that there are no 
polynomial-time algorithm exists for the NP-
complete problems, so the construction of the 
proof is failed, i.e. ZFC, or if the polynomial-time 
algorithm exists for NP-complete problem exists 
but it is impossible to prove [33]. Using 
technique of sort one it can be shown that the 
problem is undecidable even with the weaker 
assumption with extending the Peano axioms 
(PA) for the integer arithmetic, then for every 
NP problem the nearly-polynomial-time 
algorithms exist [34]. However it is believes that 
there are not efficient algorithms for the entire 
problem in NP leads to the phenomena that 
independence proof using those techniques 
cannot be possible. This shows that using those 
know techniques to prove the independence for 
PA or ZFC are not easier than proving that the 
efficient algorithms exists for all NP problems. 
 
9 – Claimed solutions: 
Some of the researcher claimed the solution of 
unsolved problem of P vs NP [35]. A 
comprehensive list is held by Gerhard J. 
Woeginger [36].  Vinay Deolalikar and Palo Alto 
also claimed the proof in August 2010 that P ≠ 
NP and they got heavy attention on the internet 
and press [37]. Publicly this proof has been 
reviewed by some academics [38][39] and an 
expert Neil Immerman pointed out some of the 
fatal error in that proof [40].  
 
Deolalikar work in detail on that proof in 
September 2010, [41] and the other studies 
show by some of the theoretical computer 
scientists that the proof is not correct nor have 
any significant advancement to understand the 
problem [42]. In 2013 the assessment is 
prompted by The New Yorker article to call that 
proof attempt thoroughly discredited [43]. 
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10 – Logical characterizations: 
Some of the certain classes which contain the 
logical statements to measure the descriptive 
complexity to restated the problem of P = NP.  
For that all languages with the finite structures 
is considered in a linear order relation. Then all 
the classes which fall in the language P could be 
express in 1st order logic with the some addition 
of some suitable combinatory of fixed-point. 
This combinational order allows the recursive 
functions definition effectively. At least one 
function or predicates contain by the signature 
which additionally distinguished the order 
relation. These kinds of functions take 
polynomial space amount to store the finite 
structures, characterizes as P. 
 
The languages that are logically fall in 2nd order 
in class NP. The functions, relations and subset 
by the universal quantification are however 
excluded in that 2nd order logic. As well as that 
2nd order logic is related to all the languages 
that are in polynomial hierarchy (PH). So the 
question arises is that, is P which is a subset of 
NP can be reformulated as; is the 2nd order logic 
existentially able to describe the languages that 
the 1st order logic cannot with the fixed point? 
[44] That language is based on finite linearly 
ordered structures with nontrivial signature. In 
the previous characterization the word 
“existential” can be dropped, sine P = NP ↔ P = 
PH as we establish that NP = co-NP implies that 
NP = PH.  
 
11 – Polynomial time algorithms: 
For the NP-complete problem there is no 
polynomial time algorithm exists. However if P 
= NP then the polynomial time algorithm for 
NP-complete may be exists with some 
enormous constant which make the algorithm 
impractical. Levin represent the following 
algorithm which accepts the NP-complete 
SUBSET-SUM language correctly without any 
citation in the polynomial time if and only if P = 
NP.  
 
The algorithm runs in polynomial time if it is 
accepting, i.e. answer is “yes”. On the other 

hand, if the answer is “no” the algorithm runs 
forever. If P = NP then the algorithm is 
enormously impractical. The algorithm try to 
other programs first at least in 2b – 1 if a short 
program that can be solve the SUBSET-SUM in 
the polynomial time if it is b bits long.  
// Algorithm that accepts the NP-complete 
language SUBSET-SUM. This is a polynomial-
time algorithm if and only if P = NP. 
"Polynomial-time" means it returns "yes" in 
polynomial time when the answer should be 
"yes", and runs forever when it is "no" 
// Input: S = a finite set of integers 
// Output: "yes" if any subset of S adds up to 0. 
// Runs forever with no output otherwise. 
// Note: "Program number P" is the program 
obtained by 
// writing the integer P in binary, then 
// considering that string of bits to be a 
// program. Every possible program can be 
// generated this way, though most do nothing 
// because of syntax errors.  
 

FOR N = 1...∞ 
  FOR P = 1...N 
    Run program number P for N steps with input 
S 
    IF the program outputs a list of distinct 
integers 
         AND the integers are all in S 
         AND the integers sum to 0 
    THEN 
         OUTPUT "yes" and HALT 
 
12 – Formal Definition: 
The formal definition contains the following 
points. 
 
12.1 – P and NP: 
A decision problem takes string ‘w’ as an input 
from an alphabet Σ and output the Boolean 
value, i.e. “yes” or “no”. If there are a TM, i.e. 
an algorithm that takes the input string of 
length n and produce the answer correctly at 
most cnk steps (k and c both are constant and 
independent of the input string), then one can 
guess that the problem can be solved in the 
polynomial time that fall in class P (set of the 
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languages which can be decided by a 
deterministic polynomial time TM. 
 

P = {  :L L L M  for some deterministic 

polynomial-time Turing machine M} 

Where    *: M accepts wL M w   

 
Hence, a deterministic polynomial-time TM is a 
deterministic TM M that satisfies the 
conditions; 
1. M halts on all input w 

2. k n Such that    k

MT n O n ; here O refers 

to big O notation and, 

    max : *,| |M MT n t w W w n    

 Mt w = number of steps M takes to halt on 

input w 
 
NP can be defined traditionally by 
nondeterministic TM. The major concepts of 
certificate and verifier can be used to define the 
NP in modern way. Verifiers in form of set of 
languages contain the finite alphabet is used to 
defined NP formally which runs in polynomial 
time. The notion of verifier is defined as: 
 
Let L be a language over a finite alphabet, Σ. 
 
L ∈ NP if, and only if, there exist a binary 
relation * *R     and a positive integer k 

such that the following two conditions are 
satisfied: 

1. For all *, *x x L y     such that 

 ,x y R and    ,
k

x y R y O x   

2. The language   # : ,RL x y x y R  over 

 # is decidable by a TM in 

polynomial time.   
 
LR is the verifier for L of the TM, where y is the 

certificate such that  ,x y R . In that case the 

verifier does not have the polynomial time, but 
verifier should be run in polynomial time for the 
L to be in NP. 
 
 

12.1.1 – Example: 
For example let; 

 | pq for integers p,q > 1COMPOSITE x N x    

  , |1  and y divides xR x y N N y x      

The question is that if x is composite is same as 
if x is member of composite, where COMPOSITE 
∈ NP by the definition of the verifier satisfying 
the definition narrated above. This can be done 
only if the natural numbers can be identifying 
via binary representations. However via [45] 
[46] COMPOSITE can also be happened in P. 
 
12.2 – NP-completeness: 
There are many ways for describing the 
concepts of NP-completeness. 
Let L be a language over a finite alphabet   

The following two conditions should be satisfied 
to prove that L in NP-complete. 
1. L NP  

2. 'L in NP is polynomial time reducible to L as 
'

pL L if and only if following two 

conditions satisfied.  
a. There exists : * *f   such that for all

w in * we have: 

  ': * *f w L f w L      

b. There exists a polynomial-time TM that 

halts with  f w on its tape on any input w 

 
13 – Conclusion:  
The entire problems that falls in NP-
completeness have some order parameter (at 
least one), and some time hard to solve due to 
those critical values that are near around to the 
order parameter. Separation of a region from 
one to other is performed by those critical 
values such as over and under constrained 
regions of the problem space. In that situation 
the transition in phase occurs 0 to 1 due to 
change in solution probability. However the 
phase transition does not arise in P problems 
unless it arises to bounded N, so it has bounded 
cost.  
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For the particular problem process I have 
provide the conjectures as empirical evidence. I 
also show that one hard problem in one space 
can be map to another hard problem in the 
other space. In that way preserve the phase 
boundary under the mapping. I have also shown 
some of the cases where P and NP classes have 
the distinction and also show that how the P 
classes was excluded from the critical region. 
 
In that cases where the conjectures are true, 
then an NP problem turn into the P problem 
adding some restrictions excluding the order 
parameter of the critical values.  
 
Note that only the reduced problems carry 
these results explaining why not these results 
previously noticed particularly. So there are a 
lot of outstanding question arises, such that: 
1. What happened with NP-hard problems? 
2. Is there any situation where the hard 

problem occurs in the non-critical region?  
3. Do the other types of problems, i.e. games, 

optimization problems, etc. have the same 
properties? 
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