Assignment \# $01 \quad$ MTH603 (Spring 2024)

Marks: 10
Due Date: May 6, 2024

DON'T MISS THESE: Important instructions before attempting the solution and submission of this assignment:

- Lectures 3-10 are encompassed in Assignment 1.
- Only students in Section: Nabeela Wali shall complete this Assignment.
- Students in other teacher's section will be completing a different assignment and are strictly prohibited from solving this one.
- Submitting a copied assignment or irrelevant assignment will result in a zero grade.
- Assignment 1 is due on May 6, 2024.
- Properly Upload the solution of this assignment in MS Word format on LMS as per the previous practice.

Question 1

Find a root of the equation $x^{3}-3 x-5=0$, in the interval $(2,3)$ using Bisection Method after three Iterations. Note: Accuracy up to four decimal places is required.

Solution:

Here $x^{3}-3 x-5=0$
Let $f(x)=x^{3}-3 x-5$
$1^{s t}$ iteration :
Here $f(2)=-3<0$ and $f(3)=13>0$
\therefore Now, Root lies between 2 and 3
$x_{0}=\frac{2+3}{2}=2.5$
$f\left(x_{0}\right)=f(2.5)=2.5^{3}-3 \cdot 2.5-5=3.125>0$
$2^{\text {nd }}$ iteration :
Here $f(2)=-3<0$ and $f(2.5)=3.125>0$
\therefore Now, Root lies between 2 and 2.5
$x_{1}=\frac{2+2.5}{2}=2.25$
$f\left(x_{1}\right)=f(2.25)=2.25^{3}-3 \cdot 2.25-5=-0.3594<0$
$3^{\text {rd }}$ iteration:
Here $f(2.25)=-0.3594<0$ and $f(2.5)=3.125>0$
\therefore Now, Root lies between 2.25 and 2.5

$$
x_{2}=\frac{2.25+2.5}{2}=2.375
$$

$$
f\left(x_{2}\right)=f(2.375)=2.375^{3}-3 \cdot 2.375-5=1.2715>0
$$

Hence, the approximate root is 2.375 after 3rd iteration.

Only students of Section: Nabeela Wali shall solve this Assignment.

Question 2
Find a root of the following equation in the interval $(0,1)$ using Newton-Raphson Method after three iterations

$$
x e^{x}-\cos x=0
$$

Take Initial value 0.5.
Note: Accuracy up to four decimal places is required. Here is a transcendental equation all the calculation should be done in the radians mode.

Solution:

As we know Newton -Raphson Formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

```
Here \(x e^{x}-\cos (x)=0\)
Let \(f(x)=x e^{x}-\cos (x)\)
    \(\therefore f^{\prime}(x)=e^{x}+x e^{x}+\sin (x)\)
```

Here

x	0	1
$f(x)$	-1	2.178

Here $f(0)=-1<0$ and $f(1)=2.178>0$
\therefore Root lies between 0 and 1
$x_{0}=\frac{0+1}{2}=0.5$
$x_{0}=0.5$
$1^{\text {st }}$ iteration :
$f\left(x_{0}\right)=f(0.5)=0.5 e^{0.5}-\cos (0.5)=-0.0532$
$f^{\prime}\left(x_{0}\right)=f^{\prime}(0.5)=e^{0.5}+0.5 e^{0.5}+\sin (0.5)=2.9525$
$x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
$x_{1}=0.5-\frac{-0.0532}{2.9525}$
$x_{1}=0.518$

Only students of Section: Nabeela Wali shall solve this Assignment.

$2^{\text {nd }}$ iteration :

$$
\begin{aligned}
& f\left(x_{1}\right)=f(0.518)=0.518 e^{0.518}-\cos (0.518)=0.0008 \\
& f^{\prime}\left(x_{1}\right)=f(0.518)=e^{0.518}+0.518 e^{0.518}+\sin (0.518)=3.0435 \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f\left(x_{1}\right)} \\
& x_{2}=0.518-\frac{0.0008}{3.0435} \\
& x_{2}=0.5178
\end{aligned}
$$

$3^{\text {rd }}$ iteration :

$$
\begin{aligned}
& f\left(x_{2}\right)=f(0.5178)=0.5178 e^{0.5178}-\cos (0.5178)=0 \\
& f\left(x_{2}\right)=f^{\prime}(0.5178)=e^{0.5178}+0.5178 e^{0.5178}+\sin (0.5178)=3.0421
\end{aligned}
$$

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f\left(x_{2}\right)}
$$

$$
x_{3}=0.5178-\frac{0}{3.0421}
$$

$$
x_{3}=0.5178
$$

Hence , the root is 0.5178 .

