MTH603 MCQs

The determinant of a diagonal matrix is the product of the diagonal elements.
TrueFalse
The determinant of a matrix is the product of the diagonal elements.
 Diagonal Upper triangular Lower triangular Scalar
Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent. (Page 6)
TrueFalse
Power method is applicable if the Eigen vectors corresponding the Eigen values are linearly
Independent (Page 6)Dependent
Power method is applicable if the Eigen values are real and distinct.
TrueFalse
Power method is applicable if the eigen values are
real and distinctreal and equal

positive and distinct

> negative and distinct
A 3 x 3 identity matrix have three and different eigen values.
TrueFalse
A 3 x 3 identity matrix have three andEigen values.
sameDifferent
If n x n matrices A and B are similar, then they have the different Eigen values (with the same multiplicities).
TrueFalse
If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities).
samedifferent
If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities).
TRUEFALSE
The Jacobi's method is a method of solving a matrix equation on a matrix that has zeros along its main diagonal. (Bronshtein and Semendyayev 1997, p. 892)
NoAt least one
The Jacobi's method is a method of solving a matrix equation on a matrix that has no
zeros along its main diagonal.
(Bronshtein and Semendyayev 1997, p. 892).

TrueFalse
1. The Jacobi's method is a method of solving a matrix equation on a matrix that has no
zeros along its
 main diagonal last column last row first row
1.An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to
UnityZero
An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to zero.
TRUEFALSE
1.The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric
positive definite matrices A.
TrueFalse
The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric
definite matrices A.

PositiveNegative

Eigenvalues of a symmetric matrix are all
 Real Zero Positive Negative
The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A.
TrueFalse
The characteristics polynomial of a 3x 3 identity matrix is, if x is the eigen values of the given 3 x 3 identity matrix. where symbol ^ shows power.
> $(x-1)3$ > $(x+1)3$ > $x3-1$ > $x3+1$
1.For differences methods we require the set of values
TrueFalse
If x is an eigenvalue corresponding to eigenvalue of V of a matrix A. If a is any constant, then $x - a$ is an eigen value corresponding to eigen vector V is an of the matrix A - a I.
TrueFalse
Central difference method seems to be giving a better approximation, however it requires more computations.
TrueFalse
1.Iterative algorithms can be more rapid than direct methods.

TrueFalse
1.Central Difference method is the finite difference method.
TrueFalse
1.The dominant or principal eigenvector of a matrix is an eigenvector corresponding to the
Eigen value of largest magnitude (for real numbers, largest absolute value) of that matrix,
TrueFalse
Eigen values of a matrix are all real.
 Symmetric Antisymmetric Rectangular Triangular
Simpson's rule is a numerical method that approximates the value of a definite integral by using polynomials.
 Quadratic Linear Cubic Quartic
1.In Simpson's Rule, we use parabolas to approximating each part of the curve. This proves to be very efficient as compared to Trapezoidal rule.
TrueFalse
The predictor-corrector method an implicit method. (multi-step methods)

TrueFalse
Generally, Adams methods are superior if output at many points is needed.
TrueFalse
In Trapezoidal rule, the integral is computed on each of the sub-intervals by using linear interpolating formula, ie. For n=1 and then summing them up to obtain the desired integral.
TrueFalse
The Trapezoidal rule is a numerical method that approximates the value of a
 Indefinite integral Definite integral Improper integral Function
The need of numerical integration arises for evaluating the definite integral of a function that has no explicit or whose antiderivative is not easy to obtain.
AntiderivativeDerivatives
In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy.
TRUEFALSE
1.An indefinite integral may in the sense that the limit defining it may not exist.

> converge
1.The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used to model the curve in trapezoidal Rule.
 straight lines curves parabolas constant
An improper integral is the limit of a definite integral as an endpoint of the interval of sintegration approaches either a specified real number or ∞ or - ∞ or, in some cases, as both endpoints approach limits.
TRUEFALSE
1.Euler's Method numerically computes the approximate derivative of a function.TRUEFALSE
 1.Euler's Method numerically computes the approximate of a function. Antiderivative Derivative Error Value
1.If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to
 Constant Finite Infinity Zero

diverge

Exact solution of 2/3 is not exists.
TRUEFALSE
The Jacobi iteration converges, if A is strictly diagonally dominant.
TRUEFALSE
1. The Jacobi iteration, if A is strictly diagonally dominant.
convergesdiverges
Below are all the finite difference methods EXCEPT
 jacobi's method newton's backward difference method Stirlling formula Forward difference method
If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix, the eigenvalues of A are the diagonal entries of A.
TRUEFALSE
Two matrices with the same characteristic polynomial need not be similar.
TRUEFALSE
Differences methods find the solution of the system.
numericalAnalytical
By using determinants, we can easily check that the solution of the given system of linear equation exits and it is unique.

> TRUE

> FALSE

Direct method can more rapid than iterative algorithms

- > TRUE
- > FALSE

The dominant eigenvector of a matrix is an eigenvector corresponding to the eigenvalue of largest magnitude (for real numbers, smallest absolute value) of that matrix.

- > TRUE
- > FALSE

The central difference method is finite difference method.

- > True
- > False

The absolute value of a determinant (|detA|) is the product of the absolute values of the eigenvalues of matrix A

- > TRUE
- > FALSE

Eigenvectors of a symmetric matrix are orthogonal, but only for distinct eigenvalues.

- > TRUE
- > FALSE

Let A be an $n \times n$ matrix. The number x is an eigenvalue of A if there exists a non-zero vector v such that _____.

- ightharpoonup Av = xv
- \rightarrow Ax = xv
- \rightarrow Av + xv=0
- \rightarrow Av = Ax

In Jacobi's Method, the rate of convergence is quite compared with other
 methods. slow fast
Numerical solution of 2/3 up to four decimal places is
 ▶ 0.667 ▶ 0.6666 ▶ 0.66667 ▶ 0.66667
Euler's method is only useful for a few steps and small step sizes; however Euler's method together with Richardson extrapolation may be used to increase the
 order and accuracy divergence
The first langrange polynomial with equally spaced nodes produced the formula for
 ➢ Simpson's rule ➢ Trapezoidal rule ➢ Newton's method ➢ Richardson's method
The need of numerical integration arises for evaluating the indefinite integral of a function that has no explicit antiderivative or whose antiderivative is not easy to obtain.
TRUEFALSE
The Euler method is numerically unstable because of convergence of error.
SlowFast

Moderate
> No
Adams – Bashforth is a multistep method.
TrueFalse
Multistep method does not improve the accuracy of the answer at each step.
FalseTrue
1.Generally, Adams methods are superior if output at points is needed.
 Many Two Single At most
Symbol used for forward differences is
 ∇ Δ δ μ
The relationship between central difference operator and the shift operator is given by
> $\delta = E - E^{-1}$ > $\delta = E + E^{-1}$ > $\delta = E^{1/2} + E^{-1/2}$ > $\delta = E^{1/2} - E^{-1/2}$
Muller's method requiresstarting points
> 1 > 2

> <mark>3</mark>

If we retain r+1 terms in Newton's forward difference formula, we obtain a polynomial

of degree ---- agreeing with y_x at x_0 , x_1 , X_n .

- \rightarrow r+2
- \rightarrow r+1
- > r
- > r-1

Octal number system has the base -----

- **>** 2
- > 8
- **>** 10
- **>** 16

Newton's divided difference interpolation formula is used when the values of the are

- > Equally spaced
- ➤ Not equally spaced
- > Constant
- None of the above

Rate of change of any quantity with respect to another can be modeled by

- > An ordinary differential equation
- > A partial differential equation
- > A polynomial equation
- ➤ None of the given choices

Adam-Moulton P-C method is derived by employing

- Newton's backward difference interpolation formula
- > Newton's forward difference interpolation formula
- ➤ Newton's divided difference interpolation formula
- > None of the given choices

Bisection method is method

- Bracketing Method
- > Open
- **▶** Random
- > none

Newton Raphson method is method

- Bracketing Method
- > Open
- > Random
- > none

Eigenvalue is

- > Real
- > Vector
- > odd
- > even

Bisection and false position methods are also known as

- bracketing method
- > open method
- > random

The Inverse of a matrix can only be found if the matrix is

- > Singular
- > Non singular
- > Scalar
- Diagonal

If f(x) contains trigonometric, exponential or logarithmic functions then this equation is known as

- > Transcendental equation
- > Algebraic
- > Polynomial
- ➤ Linear

In interpolation δ is used to represent the

- > Forward difference
- Central difference
- ➤ Backward difference

The base of the decimal system is _____

- **>** 10
- **>** 0
- > 2
- 8
- ➤ None of the above

Bisection and false position methods are also known as bracketing method and are always

- > Divergent
- Convergent

P in Newton's forward difference formula is defined as

- ightharpoonup P=(x-x0)/h
- \triangleright P=(x+x0/h
- $ightharpoonup P=(x+x_n)/h$
- $ightharpoonup P=(x-x_n)/h$

Newton's divided difference interpolation formula is used when the values of the are

- > Equally spaced
- ➤ Not equally spaced
- > Constant
- ➤ None of the above

Given the following data

X	0	1	2	4
F(x)	1	1	2	5

The value of f(2,4) is

- **▶** 1.5
- > 3
- **>** 2
- **>** 1