MTH603 MCQs | The determinant of a diagonal matrix is the product of the diagonal elements. | |--| | TrueFalse | | The determinant of a matrix is the product of the diagonal elements. | | Diagonal Upper triangular Lower triangular Scalar | | Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent. (Page 6) | | TrueFalse | | Power method is applicable if the Eigen vectors corresponding the Eigen values are linearly | | Independent (Page 6)Dependent | | Power method is applicable if the Eigen values are real and distinct. | | TrueFalse | | Power method is applicable if the eigen values are | | real and distinctreal and equal | positive and distinct | > negative and distinct | |--| | A 3 x 3 identity matrix have three and different eigen values. | | TrueFalse | | A 3 x 3 identity matrix have three andEigen values. | | sameDifferent | | If n x n matrices A and B are similar, then they have the different Eigen values (with the same multiplicities). | | TrueFalse | | If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). | | samedifferent | | If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities). | | TRUEFALSE | | The Jacobi's method is a method of solving a matrix equation on a matrix that has zeros along its main diagonal. (Bronshtein and Semendyayev 1997, p. 892) | | NoAt least one | | The Jacobi's method is a method of solving a matrix equation on a matrix that has no | | zeros along its main diagonal. | | (Bronshtein and Semendyayev 1997, p. 892). | | TrueFalse | |--| | 1. The Jacobi's method is a method of solving a matrix equation on a matrix that has no | | zeros along its | | main diagonal last column last row first row | | 1.An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to | | UnityZero | | An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to zero. | | TRUEFALSE | | 1.The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric | | positive definite matrices A. | | TrueFalse | | The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric | | definite matrices A. | | | PositiveNegative | Eigenvalues of a symmetric matrix are all | |---| | Real Zero Positive Negative | | The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A. | | TrueFalse | | The characteristics polynomial of a 3x 3 identity matrix is, if x is the eigen values of the given 3 x 3 identity matrix. where symbol ^ shows power. | | > $(x-1)3$
> $(x+1)3$
> $x3-1$
> $x3+1$ | | 1.For differences methods we require the set of values | | TrueFalse | | If x is an eigenvalue corresponding to eigenvalue of V of a matrix A. If a is any constant, then $x - a$ is an eigen value corresponding to eigen vector V is an of the matrix A - a I. | | TrueFalse | | Central difference method seems to be giving a better approximation, however it requires more computations. | | TrueFalse | | 1.Iterative algorithms can be more rapid than direct methods. | | TrueFalse | |--| | 1.Central Difference method is the finite difference method. | | TrueFalse | | 1.The dominant or principal eigenvector of a matrix is an eigenvector corresponding to the | | Eigen value of largest magnitude (for real numbers, largest absolute value) of that matrix, | | TrueFalse | | Eigen values of a matrix are all real. | | Symmetric Antisymmetric Rectangular Triangular | | Simpson's rule is a numerical method that approximates the value of a definite integral by using polynomials. | | Quadratic Linear Cubic Quartic | | 1.In Simpson's Rule, we use parabolas to approximating each part of the curve. This proves to be very efficient as compared to Trapezoidal rule. | | TrueFalse | | The predictor-corrector method an implicit method. (multi-step methods) | | TrueFalse | |--| | Generally, Adams methods are superior if output at many points is needed. | | TrueFalse | | In Trapezoidal rule, the integral is computed on each of the sub-intervals by using linear interpolating formula, ie. For n=1 and then summing them up to obtain the desired integral. | | TrueFalse | | The Trapezoidal rule is a numerical method that approximates the value of a | | Indefinite integral Definite integral Improper integral Function | | The need of numerical integration arises for evaluating the definite integral of a function that has no explicit or whose antiderivative is not easy to obtain. | | AntiderivativeDerivatives | | In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy. | | TRUEFALSE | | 1.An indefinite integral may in the sense that the limit defining it may not exist. | | | | > converge | |---| | 1.The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used to model the curve in trapezoidal Rule. | | straight lines curves parabolas constant | | An improper integral is the limit of a definite integral as an endpoint of the interval of sintegration approaches either a specified real number or ∞ or - ∞ or, in some cases, as both endpoints approach limits. | | TRUEFALSE | | 1.Euler's Method numerically computes the approximate derivative of a function.TRUEFALSE | | 1.Euler's Method numerically computes the approximate of a function. Antiderivative Derivative Error Value | | 1.If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to | | Constant Finite Infinity Zero | diverge | Exact solution of 2/3 is not exists. | |--| | TRUEFALSE | | The Jacobi iteration converges, if A is strictly diagonally dominant. | | TRUEFALSE | | 1. The Jacobi iteration, if A is strictly diagonally dominant. | | convergesdiverges | | Below are all the finite difference methods EXCEPT | | jacobi's method newton's backward difference method Stirlling formula Forward difference method | | If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix, the eigenvalues of A are the diagonal entries of A. | | TRUEFALSE | | Two matrices with the same characteristic polynomial need not be similar. | | TRUEFALSE | | Differences methods find the solution of the system. | | numericalAnalytical | | By using determinants, we can easily check that the solution of the given system of linear equation exits and it is unique. | > TRUE ## > FALSE Direct method can more rapid than iterative algorithms - > TRUE - > FALSE The dominant eigenvector of a matrix is an eigenvector corresponding to the eigenvalue of largest magnitude (for real numbers, smallest absolute value) of that matrix. - > TRUE - > FALSE The central difference method is finite difference method. - > True - > False The absolute value of a determinant (|detA|) is the product of the absolute values of the eigenvalues of matrix A - > TRUE - > FALSE Eigenvectors of a symmetric matrix are orthogonal, but only for distinct eigenvalues. - > TRUE - > FALSE Let A be an $n \times n$ matrix. The number x is an eigenvalue of A if there exists a non-zero vector v such that _____. - ightharpoonup Av = xv - \rightarrow Ax = xv - \rightarrow Av + xv=0 - \rightarrow Av = Ax | In Jacobi's Method, the rate of convergence is quite compared with other | |--| | methods. slow fast | | Numerical solution of 2/3 up to four decimal places is | | ▶ 0.667 ▶ 0.6666 ▶ 0.66667 ▶ 0.66667 | | Euler's method is only useful for a few steps and small step sizes; however Euler's method together with Richardson extrapolation may be used to increase the | | order and accuracy divergence | | The first langrange polynomial with equally spaced nodes produced the formula for | | ➢ Simpson's rule ➢ Trapezoidal rule ➢ Newton's method ➢ Richardson's method | | The need of numerical integration arises for evaluating the indefinite integral of a function that has no explicit antiderivative or whose antiderivative is not easy to obtain. | | TRUEFALSE | | The Euler method is numerically unstable because of convergence of error. | | SlowFast | | Moderate | |--| | > No | | Adams – Bashforth is a multistep method. | | TrueFalse | | Multistep method does not improve the accuracy of the answer at each step. | | FalseTrue | | 1.Generally, Adams methods are superior if output at points is needed. | | Many Two Single At most | | Symbol used for forward differences is | | ∇ Δ δ μ | | The relationship between central difference operator and the shift operator is given by | | > $\delta = E - E^{-1}$
> $\delta = E + E^{-1}$
> $\delta = E^{1/2} + E^{-1/2}$
> $\delta = E^{1/2} - E^{-1/2}$ | | Muller's method requiresstarting points | | > 1
> 2 | > <mark>3</mark> If we retain r+1 terms in Newton's forward difference formula, we obtain a polynomial of degree ---- agreeing with y_x at x_0 , x_1 , X_n . - \rightarrow r+2 - \rightarrow r+1 - > r - > r-1 Octal number system has the base ----- - **>** 2 - > 8 - **>** 10 - **>** 16 Newton's divided difference interpolation formula is used when the values of the are - > Equally spaced - ➤ Not equally spaced - > Constant - None of the above Rate of change of any quantity with respect to another can be modeled by - > An ordinary differential equation - > A partial differential equation - > A polynomial equation - ➤ None of the given choices ## Adam-Moulton P-C method is derived by employing - Newton's backward difference interpolation formula - > Newton's forward difference interpolation formula - ➤ Newton's divided difference interpolation formula - > None of the given choices Bisection method is method - Bracketing Method - > Open - **▶** Random - > none Newton Raphson method is method - Bracketing Method - > Open - > Random - > none ## Eigenvalue is - > Real - > Vector - > odd - > even Bisection and false position methods are also known as - bracketing method - > open method - > random The Inverse of a matrix can only be found if the matrix is - > Singular - > Non singular - > Scalar - Diagonal If f(x) contains trigonometric, exponential or logarithmic functions then this equation is known as - > Transcendental equation - > Algebraic - > Polynomial - ➤ Linear In interpolation δ is used to represent the - > Forward difference - Central difference - ➤ Backward difference The base of the decimal system is _____ - **>** 10 - **>** 0 - > 2 - 8 - ➤ None of the above Bisection and false position methods are also known as bracketing method and are always - > Divergent - Convergent P in Newton's forward difference formula is defined as - ightharpoonup P=(x-x0)/h - \triangleright P=(x+x0/h - $ightharpoonup P=(x+x_n)/h$ - $ightharpoonup P=(x-x_n)/h$ Newton's divided difference interpolation formula is used when the values of the are - > Equally spaced - ➤ Not equally spaced - > Constant - ➤ None of the above Given the following data | X | 0 | 1 | 2 | 4 | |------|---|---|---|---| | F(x) | 1 | 1 | 2 | 5 | The value of f(2,4) is - **▶** 1.5 - > 3 - **>** 2 - **>** 1