Virtual University of Pakistan _ زرقی علی =

MTH603

Numerical Analysis

File Version v11.02.02 Prepared For: Final Term

Note: Use Table Of Content to view the Topics, In PDF(Portable Document Format) format , you can check Bookmarks menu

Disclaimer: There might be some human errors, if you find please let me know at pak.nchd@gmail.com , duplication of data may be possible but at least possible level

Your Feed Back is Highly Appreciated.

Compiled and Prepared by:

Muhammad Ishfaq (PakPattan)

----:Table of Content:----

TABLE OF CONTENT	1
INTRODUCTION TO NUMERICAL ANALYSIS	6
Course Content:	6
EACH TOPIC ONE SOLVED QUESTION WITH STEPS:COMPILED FROM PAST ASSIGNMENT	6
Preliminary material:	6
Binary Number System (Base 2)=0,1	
Octal Number System (Base 8)=0,1,2,3,4,5,6,7	
ERROR	
Decimal Number System (Base 10)=0,1,2,3,4,5,6,7,8,9	
Hexa Number System (Base 16)=0,1,2,3,4,5,6,78,9,A,B,C,D,E,F	
The initial approximation	
Non-Linear Equations	6
Bisection Method	
Regula Falsi Method	
Method of Iterations	
Newton-Raphson Method	
Secant Method	
Muller's Method	
Graeffe's Root Square Method	
LINEAR EQUATIONS	
Gaussian Elimination Method	
Guass-Jordan Elimination Method	
Jacobi's Iterative Method	
Gauss-Seidel Iteration Method	
Relaxation Method	
Matrix Inversion	
EIGEN VALUE PROBLEMS	
Power Method	
Jacobi's Method	
INTERPOLATION	
Forward Differences	
Backward Differences	
Divided Differences	
By Newton's Forward Difference Formula	
b) By Lagrange's Formula	48
Lanarange's Interpolation	
Differentiation Using Difference Operators	50 50
Tranezoidal Rule	51
Simpson's 1/3 and 3/8 rules	55
Differential Equations	57
Taylor Series Method	57
Euler Method	
Euler Modified Method:	
Runae-Kutta Method	
Share your feedback/comments at pak.nchd@gmail.com to improve file Back to TOP File Vers	ion v11.02.02 published for Final Term

Milne's Pred	ictor Corrector Method	64
Adam Moult	an's Predictor Corrector Method	65
FAQ UPDATEI	VERSION	66
QUESTION:	What is Bracketing method?	66
QUESTION:	What is an Open method?	67
QUESTION:	Explain Muller's method briefly.	67
QUESTION:	EXPLAIN THE DIFFERENCE BETWEEN THE LINEAR AND NON-LINEAR EQUATIONS.	67
QUESTION:	EXPLAIN WHICH VALUE IS TO BE CHOOSED AS XO IN N-R METHOD.	67
OUESTION:	DEFINE ITERATIVE METHOD OF SOLVING LINEAR EQUATIONS WITH TWO EXAMPLES.	67
QUESTION:	DEFINE PIVOTING.	67
QUESTION:	Write the two steps of solving the linear equations using Gaussian Elimination	
METHOD.	67	
QUESTION:	Describe Gauss-Jordan elimination method briefly	67
OUESTION:	Describe briefly Crout's reduction method.	68
QUESTION:	DESCRIBE BRIEFLY THE JACOBI'S METHOD OF SOLVING LINEAR EQUATIONS.	68
OUESTION:	What is the difference between Jacobi's method and Gauss Seidal method?	68
OUESTION:	WHAT IS THE BASIC IDEA OF RELAXATION METHOD?	68
OUESTION:	How the fast convergence in the relaxation method is achieved?	68
OUESTION:	WHICH MATRIX WILL HAVE AN INVERSE?	68
OUESTION:	WHAT ARE THE POPULAR METHODS AVAILABLE FOR FINDING THE INVERSE OF A MATRIX?	68
OUESTION:	EXPLAIN GAUSSIAN ELIMINATION METHOD FOR FINDING THE INVERSE OF A MATRIX.	68
OUESTION:	WHAT ARE THE STEPS FOR FINDING THE LARGEST EIGEN VALUE BY POWER METHOD.	68
OUESTION:	WHAT IS THE METHOD FOR FINDING THE EIGEN VALUE OF THE LEAST MAGNITUDE OF THE MATRI	x
[A]?	69	
QUESTION:	WHAT IS INTERPOLATION?	69
QUESTION:	WHAT IS EXTRAPOLATION?	69
QUESTION:	WHAT HAPPENS WHEN SHIFT OPERATOR E OPERATES ON THE FUNCTION.	69
QUESTION:	What is the basic condition for the data to apply Newton's interpolation methods?	69
QUESTION:	When is the Newton's forward difference interpolation formula used?	69
QUESTION:	When is the Newton's forward difference interpolation formula used?	69
QUESTION:	WHEN THE NEWTON'S BACKWARD DIFFERENCE INTERPOLATION FORMULA IS USED?	69
QUESTION:	IF THE VALUES OF THE INDEPENDENT VARIABLE ARE NOT EQUALLY SPACED THEN WHICH FORMUI	A
SHOULD BE US	ED FOR INTERPOLATION?	69
QUESTION:	TO USE NEWTON'S DIVIDED DIFFERENCE INTERPOLATION FORMULA, WHAT SHOULD THE VALUES	OF
INDEPENDENT	VARIABLES BE?	69
QUESTION:	WHICH DIFFERENCE FORMULA IS SYMMETRIC FUNCTION OF ITS ARGUMENTS?	69
QUESTION:	IS THE INTERPOLATING POLYNOMIAL FOUND BY LAGRANGE'S AND NEWTON'S DIVIDED DIFFERENCE	E
FORMULAE IS	SAME?	70
QUESTION:	Which formula involves less number of arithmetic operations? Newton or	
LAGRANGE'S?	70	
QUESTION:	WHEN DO WE NEED NUMERICAL METHODS FOR DIFFERENTIATION AND INTEGRATION?	70
QUESTION:	IF THE VALUE OF THE INDEPENDENT VARIABLE AT WHICH THE DERIVATIVE IS TO BE FOUND APPE	ARS
AT THE BEGIN	NING OF THE TABLE OF VALUES, THEN WHICH FORMULA SHOULD BE USED?	70
QUESTION:	WHY WE NEED TO USE RICHARDSON'S EXTRAPOLATION METHOD?	70
QUESTION:	TO APPLY SIMPSON'S 1/3 RULE, WHAT SHOULD THE NUMBER OF INTERVALS BE?	70
QUESTION:	TO APPLY SIMPSON'S 3/8 RULE, WHAT SHOULD THE NUMBER OF INTERVALS BE?	70
QUESTION:	WHAT IS THE ORDER OF GLOBAL ERROR IN SIMPSON'S 1/3 RULE?	70
QUESTION:	WHAT IS THE ORDER OF GLOBAL ERROR IN TRAPEZOIDAL RULE?	70
QUESTION:	WHAT IS THE FORMULA FOR FINDING THE WIDTH OF THE INTERVAL?	70

QUESTION:	WHAT TYPE OF REGION DOES THE DOUBLE INTEGRATION GIVE?	70
OUESTION:	COMPARE THE ACCURACY OF ROMBERG'S INTEGRATION METHOD TO TRAPEZOIDAL AND SIMPSO	N'S
RULE.	71	
QUESTION:	What is the order of global error in Simpson's 3/8 rule?	71
QUESTION:	WHICH EQUATION MODELS THE RATE OF CHANGE OF ANY QUANTITY WITH RESPECT TO ANOTHER	?? 71
QUESTION:	By EMPLOYING WHICH FORMULA, ADAM-MOULTON P-C METHOD IS DERIVED?	71
QUESTION:	WHAT ARE THE COMMONLY USED NUMBER SYSTEMS IN COMPUTERS?	71
QUESTION:	IF A SYSTEM HAS THE BASE M, THEN HOW MANY DIFFERENT SYMBOLS ARE NEEDED TO REPRESE	ENT
AN ARBITRARY	NUMBER? ALSO NAME THOSE SYMBOLS.	71
QUESTION:	WHAT IS INHERENT ERROR AND GIVE ITS EXAMPLE.	71
QUESTION:	WHAT IS LOCAL ROUND-OFF ERROR?	71
QUESTION:	WHAT IS MEANT BY LOCAL TRUNCATION ERROR?	71
QUESTION:	WHAT IS TRANSCENDENTAL EQUATION AND GIVE TWO EXAMPLES.	71
QUESTION:	WHAT IS MEANT BY INTERMEDIATE VALUE PROPERTY?	71
QUESTION:	WHAT IS DIRECT METHODS OF SOLVING EQUATIONS?	71
QUESTION:	WHAT IS ITERATIVE METHOD OF SOLVING EQUATIONS?	72
QUESTION:	IF AN EQUATION IS A TRANSCENDENTAL, THEN IN WHICH MODE THE CALCULATIONS SHOULD BE	
DONE?	72	
QUESTION:	WHAT IS THE CONVERGENCE CRITERION IN METHOD OF ITERATION?	72
QUESTION:	When we stop doing iterations when Toll is given?	72
QUESTION:	How the value of h is calculated in interpolation?	72
QUESTION:	WHAT IS AN ALGEBRAIC EQUATION?	72
QUESTION:	WHAT IS DESCARTES RULE OF SIGNS?	72
QUESTION:	What are direct methods?	72
QUESTION:	What is meant by iterative methods?	72
QUESTION:	WHAT IS GRAPHICALLY MEANT BY THE ROOT OF THE EQUATION?	72
QUESTION:	Q. WHAT IS THE DIFFERENCE BETWEEN OPEN AND BRACKETING METHOD?	72
QUESTION:	CONDITION FOR THE EXISTENCE OF SOLUTION OF THE SYSTEM OF EQUATIONS.	73
QUESTION:	SHOULD THE SYSTEM BE DIAGONALLY DOMINANT FOR GAUSS ELIMINATION METHOD?	73
QUESTION:	WHAT IS MEANT BY DIAGONALLY DOMINANT SYSTEM?	73
QUESTION:	State the sufficient condition for the convergence of the system of equation by	
ITERATIVE ME	THODS.	73
QUESTION:	THE CALCULATION FOR NUMERICAL ANALYSIS SHOULD BE DONE IN DEGREE OR RADIANS.	73
QUESTION:	HOW WE CAN IDENTIFY THAT NEWTON FORWARD OR BACKWARDS INTERPOLATION FORMULA IS 7	'O
BE USED.	73	
QUESTION:	WHAT IS MEANT PRECISION AND ACCURACY?	73
QUESTION:	WHAT IS THE CONDITION THAT A ROOT WILL LIE IN AN INTERVAL.	73
QUESTION:	How the divided difference table is constructed?	74
QUESTION:	WHAT IS GAUSS-SEIDEL METHOD.	74
QUESTION:	WHAT IS PARTIAL AND FULL PIVOTING?	74
QUESTION:	HOW THE INITIAL VECTOR IS CHOOSE IN POWER METHOD?	74
QUESTION:	WHAT IS THE RELATION SHIP BETWEEN P=0 AND NON ZERO P IN INTERPOLATION.	74
QUESTION:	WHAT IS CHOPPING AND ROUNDING OFF?	74
QUESTION:	WHEN THE FORWARD AND BACKWARD INTERPOLATION FORMULAE ARE USED?	75
QUESTION:	WHAT IS FORWARD AND BACKWARD DIFFERENCE OPERATOR AND THE CONSTRUCTION OF THEIR	
TABLE.		
QUESTION:		75
QUESTION:	WHAT IS SIMPSON'S 3/8TH RULE.	/5
QUESTION:	WHAT IS CLASSIC RUNGE-KUTTA METHOD	75
OUESTION :		/b

QUESTION:	WHAT IS MEANT BY UNIQUENESS OF LU METHOD.	
QUESTION:	HOW THE VALU OF H IS CALCULATED FROM EQUALLY SPACED DATA.	
GLOSSARY (U	PDATED VERSION)	
<mark>Absolute Eri</mark>	ror :	
<mark>Accuracy :</mark>		
<mark>Algebraic eq</mark>	<mark>quation :</mark>	
Bisection me	ethod :	
<mark>Bracketing I</mark>	Method :	
<mark>Crout's Met</mark>	hod :	
Direct meth	<mark>ods :</mark>	
Gauss Elimii	nation Method :	
Gauss Seide	l iterative method :	
Graeffee's r	oot squaring method :	
Intermediat	e value property :	
Inverse of a	matrix :	
Iterative me	ithods :	
Jacobie's ite	erative method: :	
Muller's Me	thod :	
Newton Rap	bhson Method. :	
Non singula	r matrix : 	
Open metho	005 :	
Pivoting :		
Precision :		
Regula – Fais	si method :	
Relaxation r	netnod :	
Securit wet	100 .	
Significant o	ilyits .	
Transcender	uix .	
Truncation	Fron :	
muncution	<u></u>	
IMPORTANT FOR	MULA FOR MTH603	
Bisection M	ethod	
Muller Meth	nod	
Regula Falsi	i Method (Method of False position)	
Newton Rop	phson method	
Secant Metl	hod	
Newton's Fo	ormula	
Graffee root	t squaring method	
the truncati	on error (TE) is given by	
SHORT QUESTION	NS PAPER	
SET_01		٥٥
SET-01		
SET-02		
Question		۶۵ ۵۵
<i><i><i>qacstion</i></i></i>		
MULTIPLE CHOIC	E QUESTION	
Set-01		

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Set-02	
Set-03	
Set-04	
Set-05	
Set-06	
Set-07	
Set-08	
Set-09	
Set-10	
Set-11	
Set-12	
Set-13	

Introduction To Numerical Analysis

Course Content:

Number systems, Errors in computation, Methods of solving non-linear equations, Solution of linear system of equations and matrix inversion, Eigen value problems, power method, Jacobi's method, Different techniques of interpolation, Numerical differentiation and integration, Numerical integration formulas, different methods of solving ordinary differential equations.

Each Topic One Solved Question with Steps:Compiled from Past assignment

Preliminary material:

Representation of numbers

Binary Number System (Base 2)=0,1

Used in Computer Internal Operations and Calculation

Octal Number System (Base 8)=0,1,2,3,4,5,6,7

ERROR

Types of error are,

- Inherent errors,
- Local round-off errors
- Local truncation errors

Decimal Number System (Base 10)=0,1,2,3,4,5,6,7,8,9

World Wide used and the most common system

Hexa Number System (Base 16)=0,1,2,3,4,5,6,78,9,A,B,C,D,E,F

Used in Processor Register Addressing

Errors in computations

The initial approximation

It may be found by two methods either by graphical method or Analytical method Graphical method

Non-Linear Equations

Bisection Method

Procedure in Detail:

Step,Take two Initial Approximation such that f(x1).F(x2)<0.Means both must have opposite signs.Take their mean by x3=(x1+x2)/2

Next Take two element from which 1 will be x3 and another from x1 or x2 such that both x3 and the other element should have opposite sign.

Repeat the above process to the required numbers of iterations.

Question 1

Find the root of the equation given below by bisection method.

 $x^3 - x^2 + x - 7 = 0$

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

(Note: accuracy up to three decimal places is required.) Marks: 10 SOLUTION Let $f(x) = x^3 - x^2 + x - 7$ Now $f(1) = (1)^3 - (1)^2 + 1 - 7 = -6 < 0$ $f(2) = (2)^{3} - (2)^{2} + 2 - 7 = -1 < 0$ and $f(3) = (3)^3 - (3)^2 + 3 - 7 = 14 > 0$ As f(2) f(3) = -14 < 0Therefore a real root lies between 2 and 3 Iteration 1 Let $x_0 = 2 and x_1 = 3$ then $x_2 = (\frac{x_0 + x_1}{2})$ $=(\frac{2+3}{2})=2.5$ Now $f(2.5) = (2.5)^3 - (2.5)^2 + 2.5 - 7 = 4.875 > 0$ As f(2) f(2.5) = -1(4.875) = -4.875 < 0Therefore a real root lies between 2 and 2.5 Iteration 2

 $x_{0} = 2 \text{ and } x_{2} = 2.5$ then $x_{3} = \left(\frac{x_{0} + x_{2}}{2}\right)$ $= \left(\frac{2 + 2.5}{2}\right) = 2.25$ Now $f(2.25) = (2.25)^{3} - (2.25)^{2} + 2.25 - 7 = 1.578125 > 0$ As f(2) f(2.25) = -1(1.578125) = -1.578125 < 0Therefore a real root lies between 2 and 2.25

Iteration 3

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

 $x_0 = 2$ and $x_3 = 2.25$ then $x_4 = (\frac{x_0 + x_3}{2})$ $=(\frac{2+2.25}{2})=2.125$ Now $f(2.125) = (2.125)^3 - (2.125)^2 + 2.125 - 7 = 0.205078 > 0$ As f(2) f(2.125) = -1(0.205078) = -0.205078 < 0Therefore a real root lies between 2 and 2.125 **Iteration** 4 $x_0 = 2$ and $x_4 = 2.125$ then $x_5 = (\frac{x_0 + x_4}{2})$ $=(\frac{2+2.125}{2})=2.0625$ Now $f(2.0625) = (2.0625)^3 - (2.0625)^2 + 2.0625 - 7 = -0.417725 < 0$ As f(2.0625) f(2.125) = -0.417725(0.205078) = -0.085666 < 0Therefore a real root lies between 2.0625 and 2.125 **Iteration** 5 $x_5 = 2.0625 and x_4 = 2.125$ then $x_6 = (\frac{x_5 + x_4}{2})$ $=(\frac{2.0625+2.125}{2})=2.09375$ Now $f(2.09375) = (2.09375)^3 - (2.09375)^2 + 2.09375 - 7 = -0.111481 < 0$ As f(2.09375) f(2.125) = -0.111481(0.205078) = -0.022862 < 0Therefore a real root lies between 2.09375 and 2.125 Iteration 6 $x_6 = 2.09375 and x_4 = 2.125$ then $x_7 = (\frac{x_6 + x_4}{2})$ $=(\frac{2.09375+2.125}{2})=2.109375$ Now $f(2.109375) = (2.109375)^3 - (2.109375)^2 + 2.109375 - 7 = 0.0455 > 0$ As f(2.09375) f(2.109375) = -0.111481(0.0455) = -0.00507 < 0Therefore a real root lies between 2.09375 and 2.109375

Iteration 7

 $x_6 = 2.09375$ and $x_7 = 2.109375$ then $x_8 = (\frac{x_6 + x_7}{2})$ $=(\frac{2.09375+2.109375}{2})=2.1015625$ Now $f(2.1015625) = (2.1015625)^3 - (2.1015625)^2 + 2.1015625 - 7 = -0.0333 < 0$ As f(2.1015625) f(2.109375) = -0.0333(0.0455) = -0.01515 < 0Therefore a real root lies between 2.1015625 and 2.109375 **Iteration 8** $x_8 = 2.1015625$ and $x_7 = 2.109375$ then $x_9 = (\frac{x_8 + x_7}{2})$ $=(\frac{2.1015625+2.109375}{2})=2.10546875$ Now $f(2.10546875) = (2.10546875)^3 - (2.10546875^2 + 2.10546875 - 7 = 0.006 > 0$ As f(2.1015625) f(2.10546875) = -0.0333(0.006) = -0.0002 < 0Therefore a real root lies between 2.1015625 and 2.10546875 **Iteration** 9 $x_8 = 2.1015625$ and $x_9 = 2.10546875$ then $x_{10} = (\frac{x_8 + x_9}{2})$ $=(\frac{2.1015625+2.10546875}{2})=2.103515625$ Now $f(2.103515625) = (2.103515625)^3 - (2.103515625)^2 + 2.103515625 - 7 = -0.01367 < 0$ As f(2.103515625) f(2.10546875) = -0.01367(0.006) = -0.00008 < 0Therefore a real root lies between 2.103515625 and 2.10546875 Iteration 10 $x_{10} = 2.103515625$ and $x_9 = 2.10546875$ then $x_{11} = (\frac{x_{10} + x_9}{2})$ $=(\frac{2.103515625 + 2.10546875}{2}) = 2.104492188$ Now $f(2.104492188) = (2.104492188)^3 - (2.104492188)^2 + 2.104492188 - 7 = -0.0038 < 0$ As f(2.104492188) f(2.10546875) = -0.0038(0.006) = -0.0000228 < 0Therefore a real root lies between 2.104492188 and 2.10546875 Iteration 11

 $x_{11} = 2.104492188$ and $x_9 = 2.10546875$

then

 $x_{12} = \left(\frac{x_{11} + x_9}{2}\right)$ $= \left(\frac{2.104492188 + 2.10546875}{2}\right) = 2.104980469$

Now $f(2.104980469) = (2.104980469)^3 - (2.104980469)^2 + 2.104980469 - 7 = 0.0011 > 0$

As f(2.104492188) f(2.104980469) = -0.0038(0.0011) = -0.00000418 < 0

Therefore a real root lies between 2.104492188 and 2.104980469

As the next root lies between 2.104492188 *and* 2.104980469 and these roots are equal up to three decimal places.

So, the required root up to three decimal places is 2.104

Example From Handout at page # 4

Solve $x^3 - 9x + 1 = 0$ for the root between x = 2 and x = 4 by bisection method Solution:

Here we are given the interval (2,4) so we need not to carry out intermediate value

property to locate initial approximation.

Here $f(x) = x^3 - 9x + 1 = 0$

Now f(2)=-9 and f(4)=29.

Here f(2).f(4) < 0 So the root lies between 2 and 4.

 $So, x_o = 2, x_1 = 4$

and $x_2 = \frac{x_o + x_1}{2} = 3$ (This formula predicts next iteration)

Now f(3)=1, Here f(2). f(3)<0 So the root lies between 2 and 3.

Repeat above process to required number of iteration.

Step,Take two Initial Approximation such that f(x1).F(x2)<0.Means both must have opposite signs.Take their mean by x3=(x1+x2)/2

Next Take two element from which 1 will be x3 and another from x1 or x2 such that both x3 and the other element should have opposite sign.

Repeat the above process to the required numbers of iterations.

Regula Falsi Method

Formula for the Regula Falsi Method is $x3 = x2 - \frac{x2 - x1}{f(x2) - f(x1)}f(x2)$ or

$$x_{(n+1)} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

Steps: If the interval is given , check whether the root lies in between the interval or not by the principle that states if both number have opposite sign , then the root lies in between interval.

Find the next approximation with the help of the formula.

Question#2

Marks 10

Use Regula-Fasli method to compute the root of the equation $f(x) = \cos x - xe^x$ In the interval [0, 1] after third iteration.

Solution:

As $f(x) = \cos x - xe^{x}$ $f(0) = \cos 0 - 0e^{0} = 1 > 0$ $f(1) = \cos 1 - 1e^{1} = 0.5403 - 2.718 = -2.1779 < 0$ So root of the eq. lie between 0 and 1.Let $x_{0} = 0$ and $x_{1} = 1$ Thus $f(x_{0}) = 1$ and $f(x_{1}) = -2.1779$

The formula for finding the root of the function f(x) by Regula-Fasli is given by.

$$x_{(n+1)} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$$

For n=1 we have,

$$x_{2} = x_{1} - \frac{x_{1} - x_{o}}{f(x_{1}) - f(x_{o})} f(x_{1}) = 1 - \frac{1 - 0}{-2.17797 - 1} (-2.17797) = 1 - \frac{2.17797}{3.17797} = 1 - 0.68533 = 0.31467$$

 $f(x_2) = \cos(0.31467) - (0.31467)e^{0.31467} = 0.950899 - (0.31467)(1.369806) = 0.519863$

Since $f(x_1)$ and $f(x_2)$ are of opposite signs, the root lies between x_1 and x_2 . Therefore, for n=2 we have,

$$x_{3} = x_{2} - \frac{x_{2} - x_{1}}{f(x_{2}) - f(x_{1})} f(x_{2}) = 0.31467 - \frac{0.31467 - 1}{0.519863 - (-2.17797)} (0.519863)$$

= 0.31467 + $\frac{0.68533}{2.697833} (0.519863) = 0.44673$
 $f(x_{3}) = \cos(0.44673) - (0.44673)e^{0.44673} = 0.901864 - (0.44673)(1.563191) = 0.20353$
Since $f(x_{3})$ and $f(x_{3})$ are of expectite signs, the rest lies between x_{3} and

Since $f(x_1)$ and $f(x_3)$ are of opposite signs, the root lies between x_1 and x_3 . Therefore, for n=3 we have,

$$x_{4} = x_{3} - \frac{x_{3} - x_{1}}{f(x_{3}) - f(x_{1})} f(x_{2}) = 0.44673 - \frac{0.44673 - 1}{0.20353 - (-2.17797)} (0.20353)$$
$$= 0.44673 + \frac{0.54327}{2.3815} (0.20353) = 0.493159$$

The required root after 3^{rd} iteration using Regula-Falsi method is 0.493159 **Question 2**

Use the Regula Falsi (method of false position) to solve the equation $x^3 - 4x - 9 = 0$

(Note: accuracy up to four decimal places is required) Marks: 10 SOLUTION Let $f(x) = x^3 - 4x - 9$ Now $f(0) = (0)^3 - 4(0) - 9 = 0 - 0 - 9 = -9 < 0$ $f(1) = (1)^3 - 4(1) - 9 = 1 - 4 - 9 = -12 < 0$ $f(2) = (2)^3 - 4(2) - 9 = 8 - 8 - 9 = -9 < 0$ $f(3) = (3)^3 - 4(3) - 9 = 27 - 12 - 9 = 6 > 0$ Now, Since f(2) and f(3) are of opposite signs, therefore, the real root lies between 2 and 3 Now, let $x_1 = 2$ and $x_2 = 3$

First iteration

$$x_{3} = x_{2} - \frac{x_{2} - x_{1}}{f(x_{2}) - f(x_{1})} f(x_{2})$$

= $3 - \frac{3 - 2}{6 - (-9)}$ (6)
= $3 - \frac{1}{15}$ (6)
= $3 - \frac{2}{5}$
= 2.6
 $f(x_{3}) = f(2.6) = (2.6)^{3} - 4(2.6) - 9$
= -1.824

Second iteration

$$x_{4} = x_{3} - \frac{x_{3} - x_{2}}{f(x_{3}) - f(x_{2})} f(x_{3})$$

= 2.6 - $\frac{2.6 - 3}{-1.824 - 6} (-1.824)$
= 2.69325
 $f(x_{4}) = f(2.69325) = (2.69325)^{3} - 4(2.69325) - 9$
= -0.23725

Third iteration

9

Page No.13

$$x_{5} = x_{4} - \frac{x_{4} - x_{3}}{f(x_{4}) - f(x_{3})} f(x_{4})$$

$$= 2.69325 - \frac{2.69325 - 2.6}{-0.23725 - (-1.824)} (-0.2061)$$

$$= 2.70536$$

$$f(x_{5}) = f(2.70536) = (2.70536)^{3} - 4(2.70536) -$$

$$= -0.02098$$
Fourth iteration
$$x_{6} = x_{5} - \frac{x_{5} - x_{4}}{f(x_{5}) - f(x_{4})} f(x_{5})$$

$$= 2.70536 - \frac{2.70536 - 2.69325}{-0.02098 - (-0.23725)} (-0.02098)$$

$$=2.70653$$

 $f(x_6) = f(2.70653) = (2.70653)^3 - 4(2.70653) - 9$ = 0.0000368

Fifth iteration

$$x_{7} = x_{6} - \frac{x_{6} - x_{5}}{f(x_{6}) - f(x_{5})} f(x_{6})$$

= 2.70653 - $\frac{2.70653 - 2.70536}{0.0000368 - (-0.02098)} (0.0000368)$
= 2.70653

Hence,

The required root of the given equation correct to 4 decimal places is 2.7065

Method of Iterations

Question#1

Marks 10

Use the method of iterations to determine the real root of the equation $e^{-x} = 10x$ in the interval [0, 1], correct to four decimal places after four Iterations.

Solution:

Since $e^{-x} = 10x$.Let $f(x) = e^{-x} - 10x$.we see that f(0) = 1 and f(1) = -9.6321

As $e^{-x} = 10x$, we can easily find the value of x, thus

$$x = \frac{e^{-x}}{10}$$
, Let $\phi(x) = \frac{e^{-x}}{10}$

By taking its derivative we get

$$\phi'(x) = -\frac{e^{-x}}{10}$$
, we see that $|\phi'(x)| \prec 1$ for all values in [0,1].

Therefore we can apply method of iterations to the given function.

Take any value within [0,1].Let $x_0 = 0.5$ $x_1 = \phi(0.5) = -\frac{e^{-0.5}}{10} = 0.0607$, $f(x_1) = -0.09516$ $x_2 = \phi(0.0607) = -\frac{e^{-0.0607}}{10} = 0.0914$, $f(x_2) = 0.00869$ $x_3 = \phi(0.0914) = -\frac{e^{-0.0914}}{10} = 0.0941$, $f(x_3) = -0.000790477 = -7.90477 \times 10^{-4}$ $x_4 = \phi(0.0941) = -\frac{e^{-0.0941}}{10} = 0.0913$, $f(x_4) = 0.0000275784 = 2.75784 \times 10^{-5}$ $x_4 = 0.0913$ Example From the Handout at page #

Example

Find a real root of the equation $\cos x = 3x - 1$ correct to seven places of decimal.

Solution

Here it is a transcendental function and all the calculation must be done in the radians mode and value of pi should be 3.14

 $\begin{aligned} f(x) &= \cos x - 3x + 1 \\ f(0) &= \cos 0 - 3(0) + 1 = 1 > 0 \\ f(\pi/2) &= \cos(1.57) - 3(1.57) + 1 = 0.0007963 - 4.71 + 1 = -3.7092037 < 0 \\ so a real root lies between 0 and <math>\pi/2 \end{aligned}$

here $\phi(x) = \frac{1}{3}(\cos x + 1)$ we have $\phi'(x) = -\frac{1}{2}\sin x$

it is clearly less than 1 as sin is a bounded function and it's values lies between –1 and 1 hence iteration method can be applied

let $x_0 = 0.5$ be the initial approximation then

$$\begin{aligned} x_1 &= \phi(x_0) = \frac{1}{3} [\cos(0.5) + 1] = 0.6258608 \\ x_2 &= \phi(x_1) = \frac{1}{3} [\cos(0.6258608) + 1] = 0.6034863 \\ x_3 &= \phi(x_2) = \frac{1}{3} [\cos(0.6034863) + 1] = 0.6077873 \\ x_4 &= \phi(x_3) = \frac{1}{3} [\cos(0.6077873) + 1] = 0.6069711 \\ x_5 &= \phi(x_4) = \frac{1}{3} [\cos(0.6069711) + 1] = 0.6071264 \\ x_6 &= \phi(x_5) = \frac{1}{3} [\cos(0.6071264) + 1] = 0.6070969 \end{aligned}$$

 $\begin{aligned} x_7 &= \phi(x_6) = \frac{1}{3} [\cos(0.6070969) + 1] = 0.6071025 \\ x_8 &= \phi(x_7) = \frac{1}{3} [\cos(0.6071025) + 1] = 0.6071014 \\ x_9 &= \phi(x_8) = \frac{1}{3} [\cos(0.6071014) + 1] = 0.6071016 \\ x_{10} &= \phi(x_9) = \frac{1}{3} [\cos(0.6071016) + 1] = 0.6071016 \end{aligned}$

Newton-Raphson Method

Procedural Detail:

Find the limit if not provided by starting from x=0 to ,... Find two consecutive numbers for f(x) should have opposite sign. Use the Newton Raphson Formula to find next approximation .

Question#3

Marks 10

Find the real root of the equation $x^3 - 3x - 5 = 0$ using Newton-Raphson method in the interval [2,3] after third iteration.

Solution:

As
$$f(x) = x^3 - 3x - 5$$

 $f(2) = 2^3 - 3.2 - 5 = -3 \prec 0$
 $f(3) = 3^3 - 3.3 - 5 = 13 \succ 0$
So root of the eq. will lie in [2,3]
now $f'(x) = 3x^2 - 3$ and $f''(x) = 6x$
 $f'(2) = 3.2^2 - 3 = 9$ and $f'(3) = 3.3^2 - 3 = 24$
 $f''(2) = 6.2 = 12$ and $f''(3) = 6.3 = 18$
Since $f(3)$ and $f''(3)$ are of same sign. So we choose $x_0 = 3$
so by Newton's method we have
 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{13}{24} = 2.4583$
 $f(x_1) = (2.4583)^3 - 3(2.4583) - 5 = 14.8561 - 7.3749 - 5 = 2.4812$
 $f'(x_1) = f'(2.4583) = 3(2.4583)^2 - 3 = 18.1297 - 3 = 15.1297$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.4583 - \frac{2.4812}{15.1297} = 2.2943$
 $f(x_2) = (2.2943)^3 - 3(2.2943) - 5 = 12.0767 - 6.8829 - 5 = 0.1938$
 $f'(x_2) = f'(2.2943) = 3(2.2943)^2 - 3 = 15.7914 - 3 = 12.7914$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 2.2943 - \frac{0.1938}{12.7914} = 2.2791$
Example From the Handout at page #

Value of e=2.7182

Secant Method

Question 1

Do Four iterations of Secant method, with an accuracy of 3 decimal places to find the

root of

 $f(x) = x^3 - 3x + 1 = 0, \quad x_0 = 1, x_1 = 0.5$

Marks: 10

Solution:

FORMULA OF SECANT METHOD

$$x_{n+1} = \frac{x_{n-1}(fx_n) - x_n f(x_n - 1)}{(fx_n) - f(x_n - 1)}$$

ITERATION 1

n =1
f (x₀) = f (1) = -1
f (x₁) = f (0.5) = -0.375
x₂ =
$$\frac{x_o(fx_1) - x_1f(x_o)}{(fx_1) - f(x_o)}$$

x₂ = $(1)(-0.375) - (0.5)(-1)$
(-0.375) - (-1)
x₂ = $(1)(-0.375) + (0.5)(1)$
(-0.375) + (1)
x₂ = $(-0.375) + (0.5)$
0.625
x₂ = 0.125
0.625
x₂ = 0.2

ITERATION 2

n = 2

$$f(x_2) = f(0.2) = 0.408$$

 $x_3 = \frac{x_1(fx_2) - x_2 f(x_1)}{(fx_2) - f(x_1)}$
 $x_3 = \frac{(0.5)(0.408) - (0.2)(-0.375)}{(0.408) - (-0.375)}$
 $x_3 = \frac{(0.204) + (0.075)}{(0.408) + (0.375)}$
 $x_3 = \frac{0.279}{0.783}$
 $x_3 = 0.3563$

ITERATION 3

n = 3

$$f(x_3) = f(0.3563) = -0.02367$$

 $x_4 = \frac{x_2 f(x_3) - x_3 f(x_2)}{f(x_3) - f(x_2)}$
 $x_4 = \frac{(0.2) f(0.3563) - (0.3563) f(0.408)}{f(0.3563) - f(0.408)}$
 $x_4 = \frac{(0.2)(-0.02367) - (0.3563)(0.408)}{(-0.02367) - (0.408)}$
 $x_4 = \frac{-0.004737 - 0.1453}{-0.43167}$
 $x_4 = \frac{-0.150034}{-0.43167}$
 $x_4 = 0.3477$

ITERATION 4

n = 4

$$f(x_3) = f(0.3477) = -0.02367$$

 $x_4 = 0.3477 f(x_4) = -0.00107$
 $x_5 = \frac{x_3 f(x_4) - x_4 f(x_3)}{f(x_4) - f(x_3)}$
 $x_5 = \frac{(0.3563)(-0.00107) - (0.3563)(-0.02367)}{(-0.00107) - (-0.02367)}$
 $x_5 = \frac{-0.000381 + 0.0823}{-0.00107 + 0.02367}$
 $x_5 = \frac{0.7849}{0.0226}$
 $x_5 = 0.3473$
 $x_5 = 0.3473 f(x_5) = -0.0000096$

 $f(x) = e^{x} - 3x^{2}$, $x_{0} = 0$, $x_{1} = 1$ both are the initial approximations

Hence, the root after four iterations is **0.347**

Question 2

Use the secant method to solve the equation $e^x - 3x^2$ for $0 \le x \le 1$. (Perform only 3 iterations.)

Solution

$$f(0) = e^{0} - 3(0) = 1$$

$$f(1) = e^{1} - 3(1) = -0.281$$

now we calculate the sec ond approximation

$$x_{2} = \frac{x_{0}f(x_{1}) - x_{1}f(x_{0})}{f(x_{0}) - f(x_{1})} = \frac{(0)(-0.281) - (1)1}{-0.281 - 1} = 0.7806$$

$$f(0.7806) = e^{0.7806} - 3(0.7806)^{2} = 2.1827 - 1.82800 = 0.3546$$

now $x_{1} = 1$ and $x_{2} = 0.786$

$$f(1) = -0.281 \quad f(0.786) = 0.3546$$

$$x_{3} = \frac{x_{1}f(x_{2}) - x_{2}f(x_{1})}{f(x_{2}) - f(x_{1})} = \frac{1(0.3546) - (0.786)(-0.281)}{0.3546 + 0.281} = 0.9052$$

now

$$x_{3} = 0.9052 \qquad f(0.9052) = 2.71^{0.9052} - 3(0.9052)^{2} = 0.0074$$

$$x_{2} = 0.786 \qquad f(0.786) = 0.3546$$

$$x_{4} = \frac{x_{2}f(x_{3}) - x_{3}f(x_{2})}{f(x_{3}) - f(x_{2})} = \frac{0.7806(0.0074) - (0.9052)(0.3546)}{0.0074 + 0.3546} = 0.9076$$

Muller's Method

Question 1

Solve the equation $x^3 - 7x^2 + 14x - 6$ by using Muller's method only perform three Iterations.(

 $x_0 = 0.5, x_1 = 1, x_2 = 0$

Solution

1st iteration

$$\begin{aligned} x_0 &= 0.5, \ x_1 = 1 \text{ and } x_2 = 0 \\ f(x_0) &= f_0 = f(0.5) = (0.5)^3 - 7(0.5)^2 + 14(0.5) - 6 = -0.625 \\ f(x_1) &= f_1 = f(1) = 1^3 - 7(1)^2 + 14(1) - 6 = 2 \\ f(x_2) &= f_2 = f(0) = (0)^3 - 7(0)^2 + 14(0) - 6 = -6 \\ c &= f_0 = -0.625 \\ h_1 &= x_1 - x_0 = 1 - 0.5 = 0.5 \\ h_2 &= x_0 - x_2 = 0.5 - 0 = 0.5 \\ a &= \frac{h_2 f_1 - (h_1 + h_2) f_0 + h_1 f_2}{h_1 h_2 (h_1 + h_2)} \\ a &= \frac{(0.5)(2) - (0.5 + 0.5)(-0.625) + (0.5)(-6)}{(0.5)(0.5)(0.5 + 0.5)} = \frac{1 - (1)(-0.625) + (0.5)(-6)}{(0.5)(0.5)(1)} = -5.5 \end{aligned}$$

$$b = \frac{f_1 - f_0 - ah_1^2}{h_1}$$
$$b = \frac{2 - (-0.625) - (-5.5)(0.5)^2}{0.5} = \frac{2 + 0.625) + (5.5)(0.25)^2}{0.5} = 8$$

$$x = x_0 - \frac{2c}{b - \sqrt{b^2 - 4ac}}$$

$$x = 0.5 - \frac{2(-0.625)}{8 - \sqrt{(8)^2 - (4)(-5.5)(-0.625)}}$$

$$x = 1.8721$$

2nd iteration

$$x_0 = 0.5$$
, $x_1 = 1.8721$ and $x_2 = 1$
 $f(x_0) = f_0 = f(0.5) = (0.5)^3 - 7(0.5)^2 + 14(0.5) - 6 = -0.625$
 $f(x_1) = f_1 = f(1) = 1.8721^3 - 7(1.8721)^2 + 14(1.8721) - 6 = 2.228$

Page No.20

$$f(x_2) = f_2 = f(0) = (0)^3 - 7(0)^2 + 14(0) - 6 = -6$$

$$c = f_0 = -0.625$$

$$h_1 = x_1 - x_0 = 1.8721 - 0.5 = 1.3721$$

$$h_2 = x_0 - x_2 = 0.5 - 1 = -0.5$$

$$a = \frac{h_2 f_1 - (h_1 + h_2) f_0 + h_1 f_2}{h_1 h_2 (h_1 + h_2)}$$
$$a = \frac{(-0.5)(2.228) - (1.3721 - 0.5)(-0.625) + (1.3721)(-6)}{(1.3721)(-0.5)(1.3721 - 0.50.5)} = 14.70$$

$$b = \frac{f_1 - f_0 - ah_1^2}{h_1}$$
$$b = \frac{2.228 - (-0.625) - (14.70)(1.3721)^2}{0.5} = -17.72$$

$$x = x_0 - \frac{2c}{b - \sqrt{b^2 - 4ac}}$$

$$x = 0.5 + \frac{1.25}{12.62 - \sqrt{(17.72)^2 - (4)(14.71)(-0.625)}} = 0.29$$

$$x = 1.8721$$

For 3rd iteration

 $x_0 = 0.29$, $x_1 = 1.8721$, $x_2 = 1$

For third iteration we will proceed in the same manner.

Graeffe's Root Square Method

Linear Equations

Gaussian Elimination Method

Question 2

Using Gaussian Elimination Method, solve the following system of equations

$$x_1 + x_2 + 2x_3 = 9$$

$$x_1 + 3x_2 + 2x_3 = 13$$

$$3x_1 + x_2 + 3x_3 = 14$$

Solution:

The Augmented Matrix of the given system of equations is

Marks: 10

4	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	2	9	
A_b	= 1	3	2	13	
	3	1	3	14	
	-				
	[1	1	2	9]	
\Box^R	0	2	0	4	by $R_2 - R_1$ and $R_3 - 3R_1$
	0	-2	-3	-13	
	[1	1	2	9]	1
\Box^R	0	1	0	2	$by \frac{1}{2}R_2$
	0	-2	-3	-13	2
	[1	1	2	9 -	
\Box^R	0	1	0	2	by $R_3 + (-2)R_2$
	0	0	-3	-9_	
\square^R	[1	1	2	9]	1
	0	1	0	2	$by \frac{-1}{3}R_{3}$
	0	0	1	3	5

Which shows that from the third and second rows

Z=3, y = 2 And from the first row

X+y+2z=9

Using the values of y and z, we get x = 1Hence the solution of the given system is X = 1, y = 2, z = 3

Question 1

Using Gaussian Elimination Method, solve the following system of equations 2r - y + 2z - 2

$$x - y - z = 3$$
$$x + 10y - 3z = 5$$
$$x - y - z = 3$$

Marks: 10

Solution:

The Augmented Matrix of the given system of equations is

A_{b} :	$= \begin{bmatrix} 2 & -1 \\ 1 & 10 \\ 1 & -1 \end{bmatrix}$	1 2 0 -3 -1	2 5 3	
\Box^R	$\begin{bmatrix} 1 & 10 \\ 2 & -1 \\ 1 & -1 \end{bmatrix}$	$ \begin{array}{rrrr} -3 & 5 \\ 2 & 2 \\ -1 & 3 \end{array} $	by	<i>R</i> ₁₂
\Box^R	$\begin{bmatrix} 1 & 10 \\ 0 & -21 \\ 0 & -11 \end{bmatrix}$	-3 8 2	$\begin{bmatrix} 5 \\ -8 \\ -2 \end{bmatrix}$	by $R_2 - 2R_1, R_3 - R_1$
\square^R	$\begin{bmatrix} 1 & 10 \\ 0 & 1 \\ 0 & -11 \end{bmatrix}$	-3 $-\frac{8}{21}$ 2	$5 \\ \frac{8}{21} \\ -2 \end{bmatrix}$	$by \frac{-1}{21}R_2$
	1 10 0 1 0 0	-3 $-\frac{8}{21}$ $-\frac{46}{21}$	5 $\frac{8}{21}$ $\frac{46}{21}$	$by R_3 + 11R_2$

Using Gaussian Elimination method, by backward substitution, we get as follows From the third row, we get

 $-\frac{46}{21}z = \frac{46}{21}$ $\Rightarrow z = -1$ From the second row, we get $y - \frac{8}{21}z = \frac{8}{21}$ $\Rightarrow y = \frac{8}{21} + \frac{8}{21}z$ Putting the value of z, we get $y = \frac{8}{21} + \frac{8}{21}(-1)$ $= \frac{8}{21} - \frac{8}{21}$ = 0And finally from the first row, we get x + 10y - 3z = 5Putting the values of y and z, we get x + 10(0) - 3(-1) = 5 $\Rightarrow x + 3 = 5$ $\Rightarrow x = 2$ So, the solution is

$$x = 2, y = 0, z = -1$$

 Guass-Jordan Elimination Method
 Marks 10

 Question#1
 Marks 10

By using Gauss –Jordan elimination method, solve the following system of equations,

x + y + z = 7 3x + 3y + 4z = 242x + y + 3z = 16

Solution:

The given system in matrix form is

$$\begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ 24 \\ 16 \end{bmatrix}$$

$$A \quad X = B$$

$$\therefore [A | B] = \begin{bmatrix} 1 & 1 & 1 & 1 & 7 \\ 3 & 3 & 4 & 24 \\ 2 & 1 & 3 & 16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 2 & 1 & 3 & 16 \\ 3 & 3 & 4 & 24 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 2 & 1 & 3 & 16 \\ 3 & 3 & 4 & 24 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 7 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$R_{23}$$

$$\begin{bmatrix} 1 & 0 & 2 & 9 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$R_{2} \rightarrow R_{2} - 2R_{1}, R_{3} \rightarrow R_{3} - 3R_{1}$$

$$\begin{bmatrix} 1 & 0 & 2 & 9 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} + R_{2}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & -1 & 0 & 1 & 3 \end{bmatrix}$$

$$R_{1} \rightarrow R_{1} - 2R_{3}, R_{2} \rightarrow R_{2} - R_{3}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 1 & 3 \end{bmatrix}$$

$$-R_{2}$$

Jacobi's Iterative Method

So,

x = 3, y = 1, z = 3

Page No.24

Solve the following system of equations

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

By Jacobi's iterative method taking the initial starting of solution vector as $(0,0,0)^{T}$ and perform the first three iterations.

Solution:

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

$$x = \frac{17 - y + 2z}{20}$$

$$y = \frac{-18 - 3x + z}{20}$$

$$z = \frac{25 - 2x + 3y}{20}$$

starting with (0,0,0) <u>Iteration#01</u>

$$x = \frac{17 - 0 + 2(0)}{20} = \frac{17}{20} = 0.85$$
$$y = \frac{-18 - 3(0) + 0}{20} = \frac{-18}{20} = -0.9$$
$$z = \frac{25 - 2(0) + 3(0)}{20} = \frac{25}{20} = 1.25$$

<u>Iteration#02</u> x = 0.85, y = -0.9, z = 1.25

$$x = \frac{17 - (-0.9) + 2(1.25)}{20} = \frac{20.4}{20} = 1.02$$
$$y = \frac{-18 - 3(0.85) + 1.25}{20} = \frac{-19.3}{20} = -0.965$$
$$z = \frac{25 - 2(0.85) + 3(-0.9)}{20} = \frac{20.6}{20} = 1.03$$

Iteration#03

x = 1.02, y = -0.965, z = 1.03

Page No.25

Marks 10

$$x = \frac{17 - (-0.965) + 2(1.03)}{20} = \frac{20.025}{20} = 1.00125$$
$$y = \frac{-18 - 3(1.02) + 1.03}{20} = \frac{-20.03}{20} = -1.0015$$
$$z = \frac{25 - 2(1.02) + 3(-0.965)}{20} = \frac{20.065}{20} = 1.00325$$

Gauss-Seidel Iteration Method

Question#3

Solve Question No. #2 by Gauss-Seidel iterative method and perform first three iterations. What you see the difference after solving the same question by two different iterative methods? Give your comments.

Solution:

The above system of linear equations is diagonally dominant; therefore, Gauss-Seidel iterative method could be applied to find out real roots

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

The above system of equations could be written in the form

$$x = \frac{17 - y + 2z}{20}$$
$$y = \frac{-18 - 3x + z}{20}$$
$$z = \frac{25 - 2x + 3y}{20}$$

starting with (0,0,0) <u>Iteration#01</u>

$$x = \frac{17 - 0 + 2(0)}{20} = \frac{17}{20} = 0.85$$
$$y = \frac{-18 - 3(0.85) + 0}{20} = \frac{-20.55}{20} = -1.0275$$
$$z = \frac{25 - 2(0.85) + 3(-1.0275)}{20} = \frac{20.2175}{20} = 1.010875$$

Iteration#02

x = 0.85, y = -1.0275, z = 1.010875

Page No.26

$$x = \frac{17 - (-1.0275) + 2(1.010875)}{20} = \frac{20.04925}{20} = 1.0024625$$
$$y = \frac{-18 - 3(1.0024625) + 1.010875}{20} = \frac{-19.9965125}{20} = -0.999825625$$
$$z = \frac{25 - 2(1.0024625) + 3(-0.999825625)}{20} = \frac{19.995598125}{20} = 0.99977990625$$

Iteration#03

х

$$=1.0024625, y = -0.999825625, z = 0.99977990625$$
$$x = \frac{17 - (-0.999825625) + 2(0.99977990625)}{20} = \frac{19.9904160625}{20} = 0.9999708$$
$$y = \frac{-18 - 3(0.9999708) + 0.99977990625}{20} = \frac{-20.00013249375}{20} = -1.0000066247$$
$$z = \frac{25 - 2(0.9999708) + 3(-1.0000066247)}{20} = \frac{20.000038526}{20} = 1.0000019263$$

In Gauss Siedal Method, the newly computed values in each iteration are directly involved to find the other value of the system of equation and save memory for computation and hence results are more accurate.

Question 2

Do five iterations to solve the following system of equations by Gauss-Seidal iterative method

10x - 2y - 3z = 305-2x + 10y - 2z = 154-2x - y + 10z = 120

Marks: 10

Solution:

Since, the given system is diagonally dominant; hence we can apply here the Gauss-Seidal method.

From the given system of equations

$$x^{r+1} = \frac{1}{10} \Big[305 + 2y^r + 3z^r \Big]$$
$$y^{r+1} = \frac{1}{10} \Big[154 + 2x^{r+1} + 2z^r \Big]$$
$$z^{r+1} = \frac{1}{10} \Big[120 + 2x^{r+1} + y^{r+1} \Big]$$

ITERATION 1

For r = 0

Taking y=z=0 on right hand side of first equation. In second equation we take z=0 and current value of x. In third equation we take current value of both x and y.

$$x^{1} = \frac{1}{10} [305 + 2(0) + 3(0)] = \frac{305}{10} = 30.5$$

$$y^{1} = \frac{1}{10} [154 + 2(30.5) + 2(0)] = \frac{1}{10} [154 + 61] = \frac{215}{10} = 21.5$$

$$z^{1} = \frac{1}{10} [120 + 2(30.5) + (21.5)] = \frac{1}{10} [120 + 61 + 21.5] = \frac{202.5}{10} = 20.25$$

ITERATION 2

Similar procedure as used in Iteration 1 will be used for Iterations 2, 3, 4 and 5.

$$x^{2} = \frac{1}{10} [305 + 2(21.5) + 3(20.25)] = \frac{408.75}{10} = 40.875$$
$$y^{2} = \frac{1}{10} [154 + 2(40.875) + 2(20.25)] = \frac{276.25}{10} = 27.625$$
$$z^{2} = \frac{1}{10} [120 + 2(40.875) + (27.625)] = \frac{229.375}{10} = 22.938$$

ITERATION 3

$$x^{3} = \frac{1}{10} [305 + 2(27.625) + 3(22.938)] = \frac{429.064}{10} = 42.906$$
$$y^{3} = \frac{1}{10} [154 + 2(42.906) + 2(22.938)] = \frac{285.688}{10} = 28.569$$
$$z^{3} = \frac{1}{10} [120 + 2(42.906) + (28.569)] = \frac{234.381}{10} = 23.438$$

ITERATION 4

$$x^{4} = \frac{1}{10} [305 + 2(28.569) + 3(23.438)] = \frac{432.452}{10} = 43.245$$
$$y^{4} = \frac{1}{10} [154 + 2(43.245) + 2(23.438)] = \frac{287.366}{10} = 28.737$$
$$z^{4} = \frac{1}{10} [120 + 2(43.245) + (28.737)] = \frac{235.227}{10} = 23.523$$

ITERATION 5

$$x^{5} = \frac{1}{10} [305 + 2(28.737) + 3(23.523)] = \frac{433.043}{10} = 43.304$$
$$y^{5} = \frac{1}{10} [154 + 2(43.304) + 2(23.523)] = \frac{287.654}{10} = 28.765$$
$$z^{5} = \frac{1}{10} [120 + 2(43.304) + (28.765)] = \frac{235.373}{10} = 23.537$$

Above Results are summarized in tabular form as

		Variables	
Iterations	X	У	Z
1	30.5	21.5	20.25
2	40.875	27.625	22.938
3	42.906	28.569	23.438

Page No.28

4	43.245	28.737	23.523
5	43.304	28.765	23.537

Hence the solution of the given system of equations, after five iterations, is x = 43.304

y = 28.765

z = 23.537

Relaxation Method

Matrix Inversion

Eigen	Value	Prob	lems
0-			

Power Method

Question 1

Find the largest eigen value of the matrix

4	1	0)		
1	20	1	MARKS	10
0	0	4)		

And the corresponding eigenvector, by Power Method after fourth iteration starting with the initial vector $v^{(0)} = (0,0,1)^T$

SOLUTION

Let $A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4 \end{pmatrix}$

Choosing an initial vector as

 $v^{(0)} = (0,0,1)^{T}$ then

ITERATION 1

$$u^{(1)} = [A]v^{(0)} \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$$

Now we normalize the resultant vector to get

 $u^{(1)} = 4 \begin{pmatrix} 0 \\ \frac{1}{4} \\ 1 \end{pmatrix} = q_1 v^{(1)}$

Page No.29

Continuing this procedure for subsequent Iterations , we have $\underline{\textbf{ITERATION}\ 2}$

$$u^{(2)} = [A]v^{(1)} \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ 6 \\ 4 \\ 1 \end{pmatrix}$$
$$u^{(2)} = 6 \begin{pmatrix} \frac{1}{24} \\ 1 \\ \frac{2}{3} \end{pmatrix} = q_2 v^{(2)}$$

ITERATION 3

$$u^{(3)} = [A]v^{(2)} \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} \frac{1}{24} \\ 1 \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 1.167 \\ 20.708 \\ 2.667 \end{pmatrix}$$
$$u^{(3)} = 20.708 \begin{pmatrix} 0.056 \\ 1 \\ 0.129 \end{pmatrix} = q_3 v^{(3)}$$

ITERATION 4

$$u^{(4)} = [A]v^{(3)} \begin{pmatrix} 4 & 1 & 0 \\ 1 & 20 & 1 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0.056 \\ 1 \\ 0.129 \end{pmatrix} = \begin{pmatrix} 1.224 \\ 20.185 \\ 0.516 \end{pmatrix}$$
$$u^{(4)} = 20.185 \begin{pmatrix} 0.061 \\ 1 \\ 0.026 \end{pmatrix} = q_4 v^{(4)}$$

Therefore, the largest eigen value and the corresponding eigen vector accurate to three decimals places are

 $\lambda = 20.185$ $(X) = \begin{pmatrix} 0.061\\1\\0.026 \end{pmatrix}$

Question 1

marks 10

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Find the largest eigen value of the matrix

 $\begin{bmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{bmatrix}$

And the corresponding eigen vector, by Power Method after fourth iteration starting with the initial vector $v^{(0)} = (0,1,0)^T$

SOLUTION

Let $A = \begin{pmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{pmatrix}$

Choosing an initial vector

 $v^{(0)} = (0, 1, 0)^{T}$ then

ITERATION 1

 $u^{(1)} = [A]v^{(0)} = \begin{pmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 10 \end{pmatrix}$

Now we normalize the resultant vector to get

$$u^{(1)} = 10 \begin{pmatrix} 0.5\\0.1\\1 \end{pmatrix} = q_1 v^{(1)}$$

Continuing this procedure for subsequent Iterations, we have **ITERATION 2**

$$u^{(2)} = [A]v^{(1)} = \begin{pmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5.5 \\ 5.6 \\ 4.5 \end{pmatrix}$$
$$u^{(2)} = 5.6 \begin{pmatrix} \frac{5.5}{5.6} \\ \frac{5.6}{5.6} \\ \frac{4.5}{5.6} \\ \frac{4.5}{5.6} \end{pmatrix} = \begin{pmatrix} 0.982 \\ 1 \\ 0.804 \end{pmatrix} = q_2 v^{(2)}$$

ITERATION 3

$$u^{(3)} = [A]v^{(2)} = \begin{pmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{pmatrix} \begin{pmatrix} 0.982 \\ 1 \\ 0.804 \end{pmatrix} = \begin{pmatrix} 12.5 \\ 7.162 \\ 13.394 \end{pmatrix}$$
$$u^{(3)} = 13.394 \begin{pmatrix} 0.933 \\ 0.535 \\ 1 \end{pmatrix} = q_3 v^{(3)}$$

$$u^{(4)} = [A]v^{(3)} = \begin{pmatrix} 6 & 5 & 2 \\ 3 & 1 & 4 \\ 1 & 10 & 3 \end{pmatrix} \begin{pmatrix} 0.933 \\ 0.535 \\ 1 \end{pmatrix} = \begin{pmatrix} 10.273 \\ 7.334 \\ 9.283 \end{pmatrix}$$
$$u^{(4)} = 10.273 \begin{pmatrix} 1 \\ 0.714 \\ 0.904 \end{pmatrix} = q_4 v^{(4)}$$

Therefore, the largest eigen value and the corresponding eigen vector accurate to four decimals places are

 $\lambda = 10.273$

and

$$(X) = \begin{pmatrix} 1 \\ 0.714 \\ 0.904 \end{pmatrix}$$

Jacobi's Method

Question 1

Using Jacobi's method, find all the eigenvalues and the corresponding eigenvectors of the following matrix,

[1	2	2]	
2	1	2	Marks: 10
2	2	1	

Note: Give results at the end of third rotation. **Solution.**

 $Let A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ $Then, A^{t} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$

Hence,

Matrix A is real and Symmetric and Jacobi's method can be applied.

Rotation 1

In Matrix A, all the off-diagonal elements are found be 2. So, the largest off-diagonal element is found to be $a_{12} = a_{13} = a_{21} = a_{23} = a_{31} = a_{32} = 2$.

Therefore, we can choose any one of them as the largest element.

Suppose, we choose a_{12} as the largest element

Then, we compute the rotation angle as,

$$\tan 2\theta = \frac{2a_{12}}{a_{11} - a_{22}} = \frac{2 \times 2}{1 - 1} = \infty$$

Therefore

 $\tan 2\theta = \infty$

$$\Rightarrow 2\theta = \frac{\pi}{2}$$
$$\Rightarrow \theta = \frac{\pi}{4}$$

Therefore, we construct an orthogonal matrix S_1 such that,

$$S_{1} = \begin{bmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} & 0 \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Now the first rotation gives,

$$D_1 = S_1^{-1} A S_1$$

Here,
$$S_1^{-1} = = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So,
 $D_1 = S_1^{-1}AS_1$
i.e.
 $D_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 2.828 \\ 0 & -1 & 0 \\ 2.828 & 0 & 1 \end{bmatrix}$

To check that we are right in our calculations, we can see that the sum of the diagonal elements is, 3+(-1)+(1)=3, which is same as the sum of the diagonal elements of the original matrix A.

Rotation 2

For the second rotation we choose the largest off-diagonal element $d_{13} = d_{31} = 2.828$, then

$$\tan 2\theta = \frac{2d_{13}}{d_{11} - d_{33}} = \frac{2(2.828)}{3 - (1)} = \frac{5.657}{2} = 2.828$$

So,

$$2\theta = \tan^{-1}(2.828) = 70.526$$

 $\theta = 35.263$

Therefore, we construct an orthogonal matrix S_2 such that,

$$S_{2} = \begin{bmatrix} \cos(35.263) & 0 & -\sin(35.263) \\ 0 & 1 & 0 \\ \sin(35.263) & 0 & \cos(35.263) \end{bmatrix}$$
$$= \begin{bmatrix} 0.817 & 0 & -0.577 \\ 0 & 1 & 0 \\ 0.577 & 0 & 0.817 \end{bmatrix}$$

$$S_2^{-1} = \begin{bmatrix} 0.817 & 0 & 0.577 \\ 0 & 1 & 0 \\ -0.577 & 0 & 0.817 \end{bmatrix}$$

Now the rotation 2 gives,

 $D_2 = S_2^{-1} D_1 S_2$

$$D_{2} = \begin{bmatrix} 0.817 & 0 & 0.577 \\ 0 & 1 & 0 \\ -0.577 & 0 & 0.817 \end{bmatrix} \begin{bmatrix} 3 & 0 & 2.828 \\ 0 & -1 & 0 \\ 2.828 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.817 & 0 & -0.577 \\ 0 & 1 & 0 \\ 0.577 & 0 & 0.817 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Again to check that we are right in our calculations, we can see that the sum of the diagonal elements is 5+(-1)+(-1)=3 which is same as the sum of the diagonal elements of the original matrix A.

Rotation 3

We can see that in above iteration that D_2 is a diagonal matrix, so we stop here and take the **Eigen Values** as $\lambda_1 = 5$, $\lambda_2 = -1$, $\lambda_3 = -1$

Now the Eigenvectors are the columns vectors of the matrix $S = S_1 S_2$, which are,

$$S = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.817 & 0 & -0.577 \\ 0 & 1 & 0\\ 0.577 & 0 & 0.817 \end{bmatrix}$$
$$= \begin{bmatrix} 0.577 & -0.707 & -0.408\\ 0.577 & 0.707 & -0.408\\ 0.577 & 0 & 0.817 \end{bmatrix}$$

Therefore, the corresponding *EigenVectors* are

$$X_{1} = \begin{bmatrix} 0.577\\ 0.577\\ 0.577 \end{bmatrix}, \qquad X_{2} = \begin{bmatrix} -0.707\\ 0.707\\ 0 \end{bmatrix}, \qquad X_{3} = \begin{bmatrix} -0.408\\ -0.408\\ 0.817 \end{bmatrix}$$

Interpolation

For a given table of values (,), 0,1,2,..., k k x y k= nwith equally spaced abscissas of a function y= f(x),we define the forward difference operator Δ as follows,

$$\Delta y_i = y_{i+1} - y_i, \qquad i = 0, 1, \dots, (n-1)$$

These differences are called first differences of the function y and are denoted by the symbol Δy_i Here, Δ is called the first difference operator.

Similarly, rth Difference operator would be $\Delta^r y_i = \Delta^{r-1} y_{i+1} - \Delta^{r-1} y_i$ Leading term =y₀ Leading Difference= Δy Backward Difference Operators: $\nabla y_i = y_i - y_{i-1}i = n$, (n-1), ..., 1Central Difference is given by, $\delta y_i = y_{i+(1/2)} - y_{i-(1/2)}$
$\Delta y_0 = y_1 - y_0$ $\Delta y_1 = y_2 - y_1$: : : $\Delta y_{n-1} = y_n - y_{n-1}$ $\nabla y_i = y_i - y_{i-1}i = n, (n-1), \dots, 1$

OR

$$\nabla y_1 = y_1 - y_0$$

$$\nabla y_2 = y_2 - y_1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\nabla y_n = y_n - y_{n-1}$$

 $\delta y_{1/2} = y_1 - y_0, \qquad \delta y_{3/2} = y_2 - y_1,$

In General,

$$\delta y_i = y_{i+(1/2)} - y_{i-(1/2)}$$

Higher order differences are defined as follows:

$$\delta^2 y_i = \delta y_{i+(1/2)} - \delta y_{i-(1/2)}$$

$$\delta^n y_i = \delta^{n-1} y_{i+(1/2)} - \delta^{n-1} y_{i-(1/2)}$$

Shift operator, E

Let y = f(x) be a function of x, and let x takes the consecutive values x, x + h, x + 2h, etc. We then define an operator having the property

$$E f(x) = f(x+h)$$

Thus, when E operates on f (x), the result is the next value of the function. Here, E is called the shift operator. If we apply the operator E twice on f (x), we get $E^2 f(x) = E[E f(x)]$

= E[f(x+h)] = f(x+2h)

Thus, in general, if we apply the operator 'E' n times on f (x), we get $E^{n}f(x) = f(x+nh)$

The inverse operator E is defined as

$$E^{-1}f(x) = f(x-h)$$

Similarly

$$E^{-n}f(x) = f(x - nh)$$

Average Operator, µ;

it is defined as

$$\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$$
$$= \frac{1}{2} \left[y_{x+(h/2)} + y_{x-(h/2)} \right]$$

Differential Operator, D it is defined as

$$Df(x) = \frac{d}{dx}f(x) = f'(x)$$
$$D^{2}f(x) = \frac{d^{2}}{dx^{2}}f(x) = f''(x)$$

 $\Rightarrow \Delta = E - 1$ $\Rightarrow \nabla = 1 - E^{-1} = \frac{E - 1}{E}$ $\delta = E^{1/2} - E^{-1/2}$ $\Rightarrow \mu = \frac{1}{2} (E^{1/2} + E^{-1/2})$ $hD = \log E$

Newton Forward Difference Interpolation. i for any real number p, we have the operator E such that

$$E^{p} f(x) = f(x + ph).$$

$$f(x_{0} + ph) = E^{p} f(x_{0}) = (1 + \Delta)^{p} f(x_{0})$$

$$= \left[1 + p\Delta + \frac{p(p-1)}{2!}\Delta^{2} + \frac{p(p-1)(p-2)}{3!}\Delta^{3} + \cdots\right]f(x_{0})$$

$$f(x_{0} + ph) = f(x_{0}) + p\Delta f(x_{0})$$

$$+ \frac{p(p-1)}{2!}\Delta^{2} f(x_{0}) + \frac{p(p-1)(p-2)}{3!}\Delta^{3} f(x_{0})$$

$$+ \cdots + \frac{p(p-1)\cdots(p-n+1)}{n!}\Delta^{n} f(x_{0}) + \text{Error}$$

Forward Differences

Question 2

Construct a forward difference table from the following values of x and y.

х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
y=f(x)	2.0	3.5	-1.7	2.3	4.2	6.5	5.7

Marks:

10

Solution.

Forward-difference table

x	У	$\Delta \mathbf{y}$	$\Delta^2 \mathbf{y}$	$\Delta^{3}\mathbf{y}$	$\Delta^{4}\mathbf{y}$	$\Delta^{5}\mathbf{y}$	$\Delta^{6}\mathbf{y}$
1.0	2						
		1.5					

Share your feedback/comments at pak.nchd@gmail.com to improve file|| Back to TOP || File Version v11.02.02 published for Final Term

MTH603-Numerical Analysis_ Muhammad Ishfaq

Page No.38

1.2	3.5		-6.7				
		-5.2		15.9			
1.4	-1.7		9.2		-27.2		
		4		-11.3		41	
1.6	2.3		-2.1		13.8		-60.8
		1.9		2.5		-19.8	
1.8	4.2		0.4		-6		
		2.3		-3.5			
2.0	6.5		-3.1				
		-0.8					
2.2	5.7						

Backward Differences

Question 2

Construct a backward difference table from the following values of x and y

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2	
y=f(x)	2.0	3.5	-1.7	2.3	4.2	6.5	5.7	
					•	-		Marks

10

Solution.

Backward-difference table

x	У	$\Delta \mathbf{y}$	$\Delta^2 \mathbf{y}$	$\Delta^{3}\mathbf{y}$	$\Delta^4 \mathbf{y}$	$\Delta^{5}\mathbf{y}$	$\Delta^{6}\mathbf{y}$
1.0	2						
		1.5					
1.2	3.5		-6.7				
		-5.2		15.9			
1.4	-1.7		9.2		-27.2		
		4		-11.3		41	
1.6	2.3		-2.1		13.8		-60.8
		1.9		2.5		-19.8	
1.8	4.2		0.4		-6		
		2.3		-3.5			

2.0	6.5		-3.1		
		-0.8			
2.2	5.7				

Question 2	marks
10	

Form a table of forward and backward differences of the function

 $f(x) = x^3 - 3x^2 - 5x - 7$ For x = -1, 0, 1, 2, 3, 4, 5

SOLUTION

For the given function, the values of y for the given values of x are calculated as

for
$$x = -1$$

 $f(-1) = (-1)^3 - 3(-1)^2 - 5(-1) - 7 = -6$
for $x = 0$
 $f(0) = (0)^3 - 3(0)^2 - 5(0) - 7 = -7$
for $x = 1$
 $f(1) = (1)^3 - 3(1)^2 - 5(1) - 7 = -14$
for $x = 2$
 $f(2) = (2)^3 - 3(2)^2 - 5(2) - 7 = -21$
for $x = 3$
 $f(3) = (3)^3 - 3(3)^2 - 5(3) - 7 = -22$
for $x = 4$
 $f(4) = (4)^3 - 3(4)^2 - 5(4) - 7 = -11$
for $x = 5$
 $f(5) = (5)^3 - 3(5)^2 - 5(5) - 7 = 18$

So, the table of values of *x* and *y* is

X	-1	0	1	2	3	4	5
y = f(x)	-6	-7	-14	-21	-22	-11	18

Forward difference table

Forward difference table for the table of values of *x* and y = f(x) is shown below

x	у	$\Delta \mathbf{y}$	$\Delta^2 \mathbf{y}$	$\Delta^{3}\mathbf{y}$	$\Delta^4 \mathbf{y}$	$\Delta^{5}\mathbf{y}$	$\Delta^{6}\mathbf{y}$
-1	-6						
		-1					

0	-7		-6				
		-7		6			
1	-14		0		0		
		-7		6		0	
2	-21		6		0		0
		-1		6		0	
3	-22		12		0		
		11		6			
4	-11		18				
		29					
5	18						

Backward difference table

Backward difference table for the table of values of x and y = f(x) is shown below

x	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$	$\nabla^6 y$
-1	-6						
		-1					
0	-7		-6				
		-7		6			
1	-14		0		0		
		-7		6		0	
2	-21		6		0		0
		-1		6		0	
3	-22		12		0		
		11		6			
4	-11		18				
		29					
5	18						

Divided Differences

Question 1

marks 10

For the following table of values, estimate f(2.5) using Newton's forward difference interpolation formula.

x	1	2	3	4	5	6	7	8
y = f(x)	1	8	27	64	125	216	343	512

Share your feedback/comments at pak.nchd@gmail.com to improve file|| Back to TOP || File Version v11.02.02 published for Final Term

SOLUTION

Forward difference table

Forward difference table for the given values of x and y is shown below

x	У	$\Delta \mathbf{y}$	$\Delta^2 \mathbf{y}$	$\Delta^{3}\mathbf{y}$	$\Delta^4 \mathbf{y}$	$\Delta^{5}\mathbf{y}$	$\Delta^{6}\mathbf{y}$
1	1						
		7					
2	8		12				
		19		6			
3	27		18		0		
		37		6		0	
4	64		24		0		0
		61		6		0	
5	125		30		0		
		91		6			
6	216		36				
		127					
7	343		42				
		169					
8	512						

Newton's forward difference interpolation formula is given by

$$y_{x} = y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!}\Delta^{2}y_{0} + \frac{p(p-1)(p-2)}{3!}\Delta^{3}y_{0} + \frac{p(p-1)(p-2)(p-3)}{4!}\Delta^{4}y_{0} + \dots + \frac{p(p-1)(p-2)....(p-n+1)}{n!}\Delta^{n}y_{0}$$

Here

$$p = \frac{x - x_0}{h} = \frac{2.5 - 1}{1} = \frac{1.5}{1} = 1.5$$

And
$$y_0 = 1, \Delta y_0 = 7, \Delta^2 y_0 = 12, \Delta^3 y_0 = 6, \Delta^4 y_0 = \Delta^5 y_0 = \Delta^6 y_0 = 0$$

So, by putting the above values in Newton's forward difference interpolation formula, We have

MTH603-Numerical Analysis_ Muhammad Ishfaq

Page No.42

$$y_{x} = y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!}\Delta^{2}y_{0} + \frac{p(p-1)(p-2)}{3!}\Delta^{3}y_{0}$$

= 1+1.5(7) + $\frac{1.5(1.5-1)}{2!}(12) + \frac{1.5(1.5-1)(1.5-2)}{3!}(6)$
= 1+10.5 + 4.5 - 0.375
= 15.625

i.e.

 $y_{2.5} = 15.625$

Question 2

marks 10

Compute f(1.5) for the following data by using Newton's divided difference interpolation formula.

x	1	2	4	5	8
f(x)	5	14	28	45	92

SOLUTION

The divided difference table for the given data is given by

x	У	1 st D.D.	2 nd D.D.	3 rd D.D.	4 th D.D.
1	5				
		9			
2	14		-2/3		
		7		1	
4	28		10/3		-29/126
		17		-11/18	
5	45		-1/3		
		47/3			
8	92				

Newton's Divided Difference formula is $f(x) = y_0 + (x - x_0)y[x_0, x_1] + (x - x_0)(x - x_1)y[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)y[x_0, x_1, x_2, x_3] + (x - x_0)(x - x_1)(x - x_2)(x - x_3)y[x_0, x_1, x_2, x_3, x_4]$ $f(1.5) = 5 + (1.5 - 1)9 + (1.5 - 1)(1.5 - 2)(-\frac{2}{3}) + (1.5 - 1)(1.5 - 2)(1.5 - 4)1 + (1.5 - 1)(1.5 - 2)(1.5 - 4)(1.5 - 5)(-\frac{29}{126})$ = 5 + 4.5 + 0.1667 + 0.625 + 0.5035 = 10.7952

Question 3	marks
10	

Find y'(6) and y''(6) from the following table of values.

x	1	2	3	4	5	6
У	3	9	17	27	40	55

SOLUTION

Backward difference table

Backward difference table for the given values of x and y is shown below

x	У	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
1	3					
		6				
2	9		2			
		8		0		
3	17		2		1	
		10		1		-3
4	27		3		-2	
		13		-1		
5	40		2			
		15				
6	55					

By backward difference formula for first derivative, we have

MTH603-Numerical Analysis_ Muhammad Ishfaq

$$y'_{n} = \frac{1}{h} \left(\nabla y_{n} + \frac{\nabla^{2} y_{n}}{2} + \frac{\nabla^{3} y_{n}}{3} + \frac{\nabla^{4} y_{n}}{4} \right)$$
$$y'_{n} = \frac{1}{h} \left(\nabla y_{n} + \frac{\nabla^{2} y_{n}}{2} + \frac{\nabla^{3} y_{n}}{3} + \frac{\nabla^{4} y_{n}}{4} + \frac{\nabla^{5} y_{n}}{5} \right)$$
$$y'(6) = \frac{1}{1} \left(15 + \frac{2}{2} + \frac{-1}{3} + \frac{-2}{4} + \frac{-3}{5} \right)$$
$$= 15 + 1 - 0.333 - 0.5 - 0.6$$
$$= 14.567$$

By backward difference formula for second derivative, we have

 $y_n'' = \frac{1}{h^2} \left(\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n + \frac{5}{6} \nabla^5 y_n \right)$ Therefore $y''(6) = \frac{1}{1^2} [2 + (-1) + \frac{11}{12} (-2) + \frac{5}{6} (-3)]$ = 2 - 1 - 1.833 - 2.5= -3.333

Question#1

Marks 10

Find an equation of a cubic curve which passes through the points (4,-43), (7, 83), (9,327) and (12, 1053) using Divided Difference Formula.

Solution:

Newton's divided difference table is

X	Y	1 st D.D	2 nd D.D	3 rd D.D
4	-43			
7	83	42		
9	327	122	16	
12	1053	242	24	1

Newton's Divided Difference formula is

 $y = f(x) = y_0 + (x - x_0) y[x_0, x_1] + (x - x_0)(x - x_1) y[x_0, x_1, x_2] + \dots$ + $(x - x_0)(x - x_1)\dots(x - x_{n-1}) y[x_0, x_1, \dots x_n]$ now putting values in formula y = f(x) = -43 + (x - 4)(42) + (x - 4)(x - 7)(16) + (x - 4)(x - 7)(x - 9)(1) $= -43 + (x - 4)\{42 + 16x - 112 + x^2 - 16x + 63\}$ $= -43 + (x - 4)(x^2 - 7)$ $= -43 + x^3 - 7x - 4x^2 + 28$ $= x^3 - 4x^2 - 7x - 15$

Hence it is required polinomial

Question 2

marks 10

Form a table of forward and backward differences of the function $f(x) = x^3 - 3x^2 - 5x - 7$ For x = -1, 0, 1, 2, 3, 4, 5

SOLUTION

For the given function, the values of y for the given values of x are calculated as for x = -1

$$f(-1) = (-1)^{3} - 3(-1)^{2} - 5(-1) - 7 = -6$$

for x = 0
$$f(0) = (0)^{3} - 3(0)^{2} - 5(0) - 7 = -7$$

for x = 1
$$f(1) = (1)^{3} - 3(1)^{2} - 5(1) - 7 = -14$$

for x = 2
$$f(2) = (2)^{3} - 3(2)^{2} - 5(2) - 7 = -21$$

for x = 3
$$f(3) = (3)^{3} - 3(3)^{2} - 5(3) - 7 = -22$$

for x = 4
$$f(4) = (4)^{3} - 3(4)^{2} - 5(4) - 7 = -11$$

for x = 5
$$f(5) = (5)^{3} - 3(5)^{2} - 5(5) - 7 = 18$$

So, the table of values of x and y is

x	-1	0	1	2	3	4	5
y = f(x)	-6	-7	-14	-21	-22	-11	18

Forward difference table

Forward difference table for the table of values of x and y = f(x) is shown below

x	У	$\Delta \mathbf{y}$	$\Delta^2 \mathbf{y}$	$\Delta^{3}\mathbf{y}$	$\Delta^4 \mathbf{y}$	$\Delta^{5}\mathbf{y}$	$\Delta^{6}\mathbf{y}$
-1	-6						
		-1					
0	-7		-6				
		-7		6			
1	-14		0		0		
		-7		6		0	
2	-21		6		0		0
		-1		6		0	
3	-22		12		0		
		11		6			
4	-11		18				
		29					
5	18						

Backward difference table

Backward difference table for the table of values of x and y = f(x) is shown below

		I	$\mathbf{\nabla}^2$	5 3	5 4	5 5	5 6
x	У	∇y	$\nabla^2 y$	$\nabla^{3}y$	$\nabla^{-}y$	$\nabla^{3}y$	$\nabla^{\circ}y$
-1	-6						
		-1					
0	-7		-6				
		-7		6			
1	-14		0		0		
		-7		6		0	
2	-21		6		0		0
		-1		6		0	
3	-22		12		0		
		11					

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

MTH603-Numerical Analysis_ Muhammad Ishfaq

				6		
4	-11		18			
		29				
5	18					

Question 1

Marks 10

Find the interpolating polynomial for the following data by

- a) Newton's Forward Difference Formula
- b)Lagrange's Formula

Hence show that both the methods give raise to the same polynomial.

х	0	1	2	3
У	1	3	7	13

Solution:

By Newton's Forward Difference Formula

The Newton's Forward difference table is given as

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$
0	1			
		2		
1	3		2	
		4		0
2	7		2	
		6		
3	13			

We have Newton's forward difference interpolation formula as

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \dots$$
(1)

Since, the third and higher order differences are zero; Therefore, Newton's forward difference Interpolation formula reduces to

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0$$
(2)

Here,

 $x_0 = 0, y_0 = 1, \Delta y_0 = 2, \Delta^2 y_0 = 2, h = 1$ And p is given by

$$p = \frac{x - x_0}{h} = \frac{x - 0}{1} = x$$

Substituting these values in Eq.(2), we have
$$y = 1 + x(2) + \frac{x(x - 1)}{2}(2)$$
$$= 1 + 2x + x(x - 1)$$
$$= 1 + 2x + x^2 - x$$
$$= x^2 + x + 1$$

Hence, the required polynomial is

$$y = x^2 + x + 1$$

b) By Lagrange's Formula

Lagrange's Interpolation formula is given by

$$y = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

By putting the values in the formula, we get

$$y = \frac{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}(1) + \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}(3) + \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}(7) + \frac{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}(13)$$

$$y = \frac{x^3 - 6x^2 + 11x - 6}{(-1)(-2)(-3)} + \frac{3x^3 - 15x^2 + 18x}{(1)(-1)(-2)} \qquad y = \frac{x^3 - 6x^2 + 11x - 6}{-6} + \frac{3x^3 - 15x^2 + 18x}{2} + \frac{7(x^3 - 4x^2 + 3x)}{(2)(1)(-1)} + \frac{13(x^3 - 3x^2 + 2x)}{(3)(2)(1)} + \frac{7x^3 - 28x^2 + 21x}{-2} + \frac{13x^3 - 39x^2 + 26x}{6}$$

$$y = \frac{x^3 - 6x^2 + 11x - 6}{-6} + \frac{3x^3 - 15x^2 + 18x}{2} + \frac{7x^3 - 28x^2 + 21x}{-2} + \frac{13x^3 - 39x^2 + 26x}{6}$$
$$= \frac{-x^3 + 6x^2 - 11x + 6 + 9x^3 - 45x^2 + 54x - 21x^3 + 84x^2 - 63x + 13x^3 - 39x^2 + 26x}{6}$$

MTH603-Numerical Analysis_ Muhammad Ishfaq

$$y = \frac{-x^3 + 9x^3 - 21x^3 + 13x^3 + 6x^2 - 45x^2 + 84x^2 - 39x^2 - 11x + 54x - 63x + 26x + 6}{6}$$
$$= \frac{6x^2 + 6x + 6}{6}$$
$$= \frac{6(x^2 + x + 1)}{6}$$
$$= x^2 + x + 1$$

Thus we have the equation

$$y = x^2 + x + 1$$

This is the same polynomial as obtained in Newton's Forward difference interpolating formula. Hence it is proved that both the methods give rise to the same polynomial

Langrange's Interpolation

Find interpolation polynomial by Lagrange's Formula, with the help of following table,

X	1	2	3	5
f(x)	0	7	26	124

And hence find value of f (6). **Solution:**

Lagrange's interpolation formula is

$$y = f(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} f(x_0) + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} f(x_1) + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} f(x_2) + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} f(x_3) y = f(x) = \frac{(x-2)(x-3)(x-5)}{(1-2)(1-3)(1-5)} (0) + \frac{(x-1)(x-3)(x-5)}{(2-1)(2-3)(2-5)} (7) + \frac{(x-1)(x-2)(x-5)}{(3-1)(3-2)(3-5)} (26) + \frac{(x-1)(x-2)(x-3)}{(5-1)(5-2)(5-3)} (124) = 0 + \frac{7(x^3-9x^2+23x-15)}{3} - \frac{26(x^3-8x^2+17x-10)}{4} + \frac{124(x^3-6x^2+11x-6)}{24} = \frac{7(x^3-9x^2+23x-15) - 39(x^3-8x^2+17x-10)}{2} + \frac{31(x^3-6x^2+11x-6)}{6} = \frac{14(x^3-9x^2+23x-15) - 39(x^3-8x^2+17x-10) + 31(x^3-6x^2+11x-6)}{6} = \frac{16}{6}(14x^3-126x^2+322x-210-39x^3+312x^2-663x+390+31x^3-186x^2+341x-186) = \frac{1}{6}(6x^3-6) y = f(x) = x^3-1 now we have to find f(6) so f(6) = x^3-1 = (6)^3-1 = 216-1 = 215$$

Differentiation Using Difference Operators

Question#3

Marks 10

Find $f^{(2.5)}$ and $f^{(2.5)}$ from the following table,

x	1.3	1.6	1.9	2.2	2.5
f(x)	2.4	2.9	3.2	4.7	6.4

Solution:

Since x=2.5 occur at the end of the table, it is appropriate to use the backward difference formula for the derivation.

x	f(x)	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
1.3	2.4				
1.6	2.9	0.5			
1.9	3.2	0.3	-0.2		
2.2	4.7	1.5	1.2	1.4	
2.5	6.4	1.7	0.2	-1	-2.4

Backward difference table is as

 $u \sin g$ the backward difference formula for y'(x) and y''(x), we have

$$y'_{n} = \frac{1}{h} \left(\nabla y_{n} + \frac{\nabla^{2} y_{n}}{2} + \frac{\nabla^{3} y_{n}}{3} + \frac{\nabla^{4} y_{n}}{4} \right)$$

now putting value from backward diff .table we have

$$y_{2.5}' = \frac{1}{0.3} \left(1.7 + \frac{0.2}{2} + \frac{(-1)}{3} + \frac{(-2.4)}{4} \right)$$
$$y_{2.5}' = \frac{1}{0.3} \left(1.7 + 0.1 - 0.3333 - 0.6 \right)$$
$$y_{2.5}' = \frac{1}{0.3} \left(0.8667 \right)$$
$$y_{2.5}' = 2.8890$$

$$y_n'' = \frac{1}{h^2} \left(\nabla^2 y_n + \nabla^3 y_n + \frac{11}{12} \nabla^4 y_n \right)$$
$$y_{2.5}'' = \frac{1}{(0.3)^2} \left(0.2 - 1 + \frac{11}{12} (-2.4) \right)$$
$$y_{2.5}'' = \frac{1}{(0.09)} \left(0.2 - 1 - 2.2 \right)$$
$$y_{2.5}'' = \frac{1}{(0.09)} (-3)$$
$$y_{2.5}'' = -33.33$$

Numerical Integration

Trapezoidal Rule

Question 1 Marks 10 $\int e^{2x} dx$

Evaluate the integral Using (I) Trapezoidal rule (2) Simpson's 1/3 rule

By dividing the interval of integration into eight equal parts. Also calculate the percentage error from its true values in both cases.

Solution:

a) <u>By Trapezoidal Rule</u>

Since the no. of intervals are eight, so, n = 8

And a=0,b=1

So, the width of the interval is given by

 $h = \frac{b-a}{n}$ = $\frac{1-0}{8}$ = $\frac{1}{8}$ = 0.125 Since the integrand is given by $y = f(x) = e^{2x}$,

Therefore, the table of values will be

X	0	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000
y = f(x)	1	1.2840	1.6487	2.1170	2.7183	3.4903	4.4817	5.7546	7.3891

Now applying the Trapezoidal rule, we have

$$\int_{0}^{1} e^{2x} dx = \frac{h}{2} \Big[y_0 + 2 \big(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 \big) + y_8 \Big]$$

= $\frac{0.125}{2} \Big[1 + 2 \big(1.2840 + 1.6487 + 2.1170 + 2.7183 + 3.4903 + 4.4817 + 5.7546 \big) + 7.3891 \Big]$
= $0.0625 \Big[8.3891 + 2 \big(21.4946 \big) \Big]$
= $0.0625 \big(8.3891 + 42.9892 \big)$
= $0.0625 \big(51.3783 \big)$
= 3.2111

Therefore

$$\int_{0}^{1} e^{2x} dx = 3.2111$$

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

b) By Simpson's Rule

Applying Simpson's rule, we have

$$\int_{0}^{1} e^{2x} dx = \frac{h}{3} \Big[y_0 + 4 \big(y_1 + y_3 + y_5 + y_7 \big) + 2 \big(y_2 + y_4 + y_6 \big) + y_8 \Big]$$

$$= \frac{0.125}{3} \Big[1 + 4 \big[1.2840 + 2.1170 + 3.4903 + 5.7546 \big] + 2 \big[1.6487 + 2.7183 + 4.4817 \big] + 7.3891 \Big]$$

$$= \frac{0.125}{3} \Big[8.3891 + 4 \big(12.6459 \big) + 2 \big(8.8487 \big) \Big]$$

$$= \frac{0.125}{3} \big(8.3891 + 50.5836 + 17.6974 \big)$$

$$= \frac{0.125}{3} \big(76.6701 \big)$$

$$= 3.1946$$

Therefore

$$\int_{0}^{1} e^{2x} dx = 3.1946$$

<u>True value</u>

Bu integration, we have

$$\int_{0}^{1} e^{2x} dx = \left[\frac{e^{2x}}{2}\right]_{0}^{1}$$
$$= \frac{1}{2} \left[e^{2x}\right]_{0}^{1}$$
$$= \frac{1}{2} \left[e^{2} - e^{0}\right]$$
$$= \frac{1}{2} \left[7.389056099 - 1\right]$$
$$= 3.1945$$

Therefore the true value is 1

$$\int_{0}^{\infty} e^{2x} \, dx = 3.1945$$

Percentage error in Trapezoidal rule

Error = |Exact value - Computed value|So, Error = |3.1945 - 3.2111|= |-0.0166|= 0.0166

And % error is given by

$$\% \ error = \frac{error}{exact \ value} \times 100\%$$
$$= \frac{0.0166}{3.1945} \times 100\%$$
$$= 0.52\%$$

Percentage error in Simpson's 1/3 rule

Error = |Exact value - Computed value| Error = |3.1945 - 3.1946| = |-0.0001| = 0.0001And % error is given by

 $\% error = \frac{error}{exact value} \times 100\%$ $= \frac{0.0001}{3.1945} \times 100\%$ = 0.002%

Question #2

Marks 10

Evaluate the following double integral,

$$\int_{1}^{2} \int_{1}^{2} \frac{1}{x^{3} + y^{3}} dx dy$$

By using trapezoidal rule, with h = k = 0.25.

Solution:

Taking X = 1, 1.25, 1.50, 1.75, 2.00 and y = 1, 1.25, 1.50, 1.75, 2.00, the following table is obtained using the integrand

 $f(x, y) = \frac{1}{x^3 + v^3}$

Х, Ү	1.00	1.25	1.50	1.75	2.00
1.00	0.5	0.3386	0.2286	0.1572	0.1111
1.25	0.3386	0.2560	0.1877	0.1368	0.1005
1.50	0.2286	0.1877	0.1481	0.1145	0.0879
1.75	0.1572	0.1368	0.1145	0.0933	0.0749
2.00	0.1111	0.1005	0.0879	0.0749	0.0625

Now using trapezoidal, keeping variable x fixed and changing the variable y. $\int_{1}^{2} f(1, y) dy = \frac{0.25}{2} [0.5 + 2(0.3386 + 0.2286 + 0.1572) + 0.1111]$

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

$$= 0.2575$$

$$\int_{1}^{2} f(1.25, y) dy = \frac{0.25}{2} [0.3386 + 2(0.2560 + 0.1877 + 0.1368) + 0.1005]$$

$$= 0.02$$

$$\int_{1}^{2} f(1.50, y) dy = \frac{0.25}{2} [0.2286 + 2(0.1877 + 0.1481 + 0.1145) + 0.0879]$$

$$= 0.1521$$

$$\int_{1}^{2} f(1.75, y) dy = \frac{0.25}{2} [0.1572 + 2(0.1368 + 0.1145 + 0.0933) + 0.0749]$$

$$= 0.1152$$

$$\int_{1}^{2} f(2.00, y) dy = \frac{0.25}{2} [0.1111 + 2(0.1005 + 0.0879 + 0.0749) + 0.0625]$$

$$= 0.0875$$

$$\int_{1}^{2} \int_{1}^{2} \frac{1}{x^{3} + y^{3}} dx dy = \frac{h}{2} [f(1, y) + 2\{f(1.25, y) + f(1.50, y) + f(1.75, y)\} + f(2.00, y)]$$

$$= \frac{0.25}{2} [2575 + 2(0.2 + 0.1521 + 0.1152) + 0.0875]$$

$$= 0.1600$$

Simpson's 1/3 and 3/8 rules

A Simpson's 1/3 Rule:

Question: Evaluate the following integral, $\int_{1.0}^{1.8} \frac{e^x + e^{-x}}{2} dx$

Using Simpson's 1/3 rule by taking h=0.2 and e=2.7183

Solution:

First of all table of the function is created,

X	$y = f(x) = \frac{e^x + e^{-x}}{2}$
1.0	1.543
1.2	1.811
1.4	2.151
1.6	2.577
1.8	3.107

Simpson's $\frac{1}{3}$ rd rule for the given function is

$$I = \frac{h}{3} \Big[f_0 + 4 \Big(f_1 + f_3 \Big) + 2 f_2 + f_4 \Big]$$

$$I = \frac{0.2}{3} \Big[1.543 + 4 \Big(1.811 + 2.577 \Big) + 2 \Big(2.151 \Big) + 3.107 \Big]$$

$$I = \frac{0.2}{3} \Big[1.543 + 17.552 + 4.302 + 3.107 \Big]$$

$$I = \frac{0.2}{3} \Big[26.504 \Big] = 1.7669$$

Question 1

marks 10

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

A river is 80 feet wide. Depth d in feet at a distance of x feet from one bank is given by the following table.

Find	X	0	10	20	30	40	50	60	70	80
rmu	d	0	4	7	9	12	15	14	8	3

approximately the area of the cross-section by Simpson's 1/3 rule.

SOLUTION

Let y = d, depth in feet, then the table is given by

	x	0	10	20	30	40	50	60	70	80	h = 10
Here	y = d	0	4	7	9	12	15	14	8	3	n = 10

Let A be the area of the cross-section, then the area of the cross-section is given by

$$A = \int_{0}^{80} y dx$$

And the area of cross-section by Simpson's 1/3 rule is given by

$$A = \int_{0}^{80} y dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4 + y_6) + y_8]$$

= $\frac{10}{3} [0 + 4(4 + 9 + 15 + 8) + 2(7 + 12 + 14) + 3]$
= $\frac{10}{3} [0 + 4(36) + 2(33) + 3]$
= $\frac{10}{3} [0 + 144 + 66 + 3]$
= $\frac{10}{3} (213)$
= $710 \, sq. ft$

A Simpson's 3/8 Rule:

Use Simpson's 3/8 rule to estimate the number of square feet of hand in given lots when x and y are measured in feet (Use accuracy up to three places of decimal)

-		1									1
x	0	100	200	300	400	500	600	700	800	900	1000
у	125	125	120	112	90	90	95	88	75	35	0

Solution

Simpson's 3/8th rule may be written as

$$I = \frac{3h}{8} [f_0 + 3(f_1 + f_2) + 2f_3 + 3(f_4 + f_5) + 2f_6 + 3(f_7 + f_8) + 2f_9 + f_{10}]$$

$$I = \frac{3(100)}{8} [125 + 3(125 + 120) + 2(112) + 3(90 + 90) + 2(95) + 3(88 + 75) + 2(35) + 0]$$

$$I = \frac{3(100)}{8} [125 + 3(245) + 2(112) + 3(180) + 2(95) + 3(163) + 2(35)]$$

$$I = (37.5)[125 + 735 + 224 + 540 + 190 + 489 + 70]$$

$$I = (37.5)[2375] = 88987.5$$

Differential Equations

Taylor Series Method

in the interval [0,0.1].

Question 1	marks 10
Apply Taylor's Series algorithm of order 2	on the initial value problem

$$y' = x^2 + y^2$$
; $y(0) = 1$; $h = 0.05$

Sol.

As $y' = x^2 + y^2$ Since $x_0 = 0$ and $y_0 = 1$ so $y'_0 = x_0^2 + y_0^2 = 0 + 1 = 1$ Now $y_0'' = 2x_0 + 2y_0y_0' = 2(0) + 2(1)(1) = 2$ As Taylor's Series method algorithm of order 2 is $y(t) = y(t_0) + (t - t_0)y'(t_0) + \frac{(t - t_0)^2}{2!}y''(t_0)$ $y(t) = y(t_0) + hy'(t_0) + \frac{h^2}{2!}y''(t_0)$ $y(.05) = y_1 = 1 + .05(1) + \frac{(.05)^2}{2!}(2) = 1.0525$ Now we find y_2 , so $y'_1 = x_1^2 + y_1^2 = (.05)^2 + (1.0525)^2 = .0025 + 1.1077 = 1.11025$ Now $y_1'' = 2x_1 + 2y_1y_1 = 2(.05) + 2(1.0525)(1.11025) = .1 + 2.337 = 2.437$ Now $y(t) = y_2 = y(t_1) + hy'(t_1) + \frac{h^2}{2!}y''(t_1)$

$$y(0.1) = y_2 = 1.0525 + (.05)(1.11025) + \frac{(.05)^2}{2!} (2.437)$$
$$= 1.0525 + .0555 + .003 = 1.111$$

Question 2

marks 10

Given $y' = 3x^2 + 2y$ and y(0) = 2, find by Taylor's series y(0.1) and y(0.2) taking h = 0.1. SOLUTION

First few derivatives from the given differential equation are as follows

$$y' = 3x^{2} + 2y$$

 $y'' = 6x + 2y'$
 $y''' = 6 + 2y''$
 $y^{(iv)} = 2y'''$

The initial condition is given as

 $x_0 = 0$, $y_0 = 2$

So, using the given initial condition, we have

$$y_0' = 3x_0^2 + 2y_0 = 3(0)^2 + 2(2) = 4$$

$$y_0'' = 6x_0 + 2y_0' = 6(0) + 2(4) = 8$$

$$y_0''' = 6 + 2y_0'' = 6 + 2(8) = 22$$

$$y_0^{(iv)} = 2y_0''' = 2(22) = 44$$

$$y_0^{(v)} = 2y_0^{(iv)} = 2(44) = 88$$

Now, using Taylor's series method up to the fifth term, we have

$$y(x) = y_0 + (x - x_0)y'_0 + \frac{(x - x_0)^2}{2}y''_0 + \frac{(x - x_0)^3}{6}y'''_0 + \frac{(x - x_0)^4}{24}y_0^{IV} + \frac{(x - x_0)^5}{120}y_0^{V}$$

Substituting the above values of the derivatives, and the initial condition, we obtain

$$y(0.1) = 2 + (0.1 - 0_0)(4) + \frac{(0.1 - 0)^2}{2}(8) + \frac{(0.1 - 0)^3}{6}(22) + \frac{(0.1 - 0)^4}{24}(44) + \frac{(0.1 - 0)^5}{120}(88)$$

$$y(0.1) = 2 + 0.4 + 0.04 + 0.0037 + 0.00018 + 0.0000067$$

$$y(0.1) = 2.44388067 \approx 2.4439$$

So, $y(0.1) = 2.4439$

Now, we have $x_1 = 0.1, y_1 = 2.4439$

Using the above condition derivatives are calculated as follows

$$y_1' = 3x_1^2 + 2y_1 = 3(0.1)^2 + 2(2.4439) = 4.9178$$

$$y_1'' = 6x_1 + 2y_1' = 6(0.1) + 2(4.9178) = 10.4356$$

$$y_1''' = 6 + 2y_1'' = 6 + 2(10.4356) = 26.8712$$

$$y_1^{(iv)} = 2y_1''' = 2(26.8712) = 53.7424$$

$$y_1^{(v)} = 2y_1^{(iv)} = 2(53.7424) = 107.4848$$

Substituting the value of y_1 and its derivatives into Taylor's series expansion we get, after retaining terms up to fifth derivative only, we have

$$y(0.2) = y_1 + (x - x_1)y_1' + \frac{(x - x_1)^2}{2}y_1'' + \frac{(x - x_1)^3}{6}y_1''' + \frac{(x - x_1)^4}{24}y_1'' + \frac{(x - x_1)^5}{120}y_1'' + \frac{(0.2 - 0.1)^2}{2}(10.4356) + \frac{(0.2 - 0.1)^3}{6}(26.8712) + \frac{(0.2 - 0.1)^4}{24}(53.7424) + \frac{(0.2 - 0.1)^5}{120}(107.4848)$$
$$y(0.2) = 2.4439 + 0.49178 + 0.052178 + 0.004785 + 0.000224 + 0.000009 = 2.992876 \approx 2.9929$$

So,
$$y(0.2) = 2.9929$$

Euler MethodQuestion 2marks 10Use Euler's method to approximate y when x=1, given that

$$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1, taking h = 0.2$$

Sol.

$$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1, taking h = 0.2$$

here $y_{m+1} = y_m + hf(x_m, y_m)$
 $f(x, y) = \frac{y - x}{y + x}$
 $x_0 = 0, y_0 = 1$
 $y_1 = y_0 + hf(x_0, y_0)$
 $= 1 + (0.2)\frac{1 - 0}{1} = 1.2$

$$\begin{split} x_1 &= 0.2 \quad , \quad y_1 = 1.2 \\ y_2 &= y_1 + hf(x_1, y_1) \\ &= 1.2 + (0.2) \frac{1.2 - 0.2}{1.2 + 0.2} = 1.2 + (0.2)(0.7142) = 1.2 + 0.14284 = 1.34284 \\ x_2 &= 0.4 \quad , \quad y_2 = 1.34284 \\ y_3 &= y_2 + hf(x_2, y_2) \\ &= 1.34284 + (0.2) \frac{1.34284 - 0.4}{1.34284 + 0.4} = 1.34284 + (0.2)(0.10819) = 1.34284 + 0.10819 = 1.45103 \\ x_3 &= 0.6 \quad , \quad y_3 = 1.45103 \\ y_4 &= y_3 + hf(x_3, y_3) \\ &= 1.45103 + (0.2) \frac{1.45103 - 0.6}{1.45103 + 0.6} = 1.45103 + (0.2)(0.40327) = 1.45103 + 0.08065 = 1.531684 \\ x_4 &= 0.8 \quad , \quad y_4 = 1.531684 \\ y_5 &= y_4 + hf(x_3, y_3) \\ &= 1.531684 + (0.2) \frac{1.531684 - 0.8}{1.531684 + 0.8} = 1.531684 + (0.2)(0.31380) = 1.531684 + 0.06276 = 1.594444 \\ x_5 &= 1 \quad , \quad y_5 = 1.594444 \\ y_6 &= y_5 + hf(x_5, y_5) \\ &= 1.594444 + (0.2) \frac{1.594444 - 1}{1.594444 + 1} = 1.594444 + (0.2)(0.22912) = 1.594444 + 0.045824 = 1.640268 \end{split}$$

Euler Modified Method:

Question 1marks 10Given that $y' = \log(x+y)$ with y(0) = 1, Use Modified Euler's method to find y(0.2), takingh = 0.2

SOLUTION

The given differential equation is

 $\frac{dy}{dx} = y' = \log(x+y), \quad y(0) = 1,$ So, here $x_0 = 0, y_0 = 1,$ h = 0.2

At first, we use Euler's method to get

$$y_1^{(1)} = y_0 + hf(x_0, y_0)$$

= $y_0 + h\log(x_0 + y_0)$
= $1 + 0.2[\log(0 + 1)]$
= $1 + 0.2\log(1)$
= $1 + 0.2(0)$
= $1 + 0$
= 1

so $x_1 = 0.2, y_1^{(1)} = 1$

Then, we use modified Euler's method to find

$$y(0.2) = y_1 = y_0 + h \frac{f(x_0, y_0) + f(x_1, y_1^{(1)})}{2}$$

= 1+(0.2) $\frac{\log(0+1) + \log(0.2+1)}{2}$
= 1+(0.2) $\frac{\log(1) + \log(1.2)}{2}$
= 1+(0.1)[log(1) + log(1.2)]
= 1+(0.1)(0+0.0792)
= 1+0.1(0.0792)
= 1+0.00792
= 1.00792

Runge-Kutta Method

Question 2

marks 10

Given y' = x + 2y + 1, y(0) = 2, Find y(1) and y(2) using the Runge-Kutta method of fourth order taking h=1

SOLUTION

Given differential equation is y' = x + 2y + 1, y(0) = 2Here h = 1 and $x_0 = 0$, $y_0 = 2$ The Fourth-Order Runge-Kutta Method is described as :-

$$y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

where,
$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

First Iteration:-

$$\begin{aligned} x_0 &= 0 \quad , \quad y_0 = 2 \\ k_1 &= hf(x_0, y_0) \\ &= 1f(0, 2) \\ &= 1[0 + 2(2) + 1] \\ &= 1(5) \\ &= 5 \end{aligned}$$

$$\begin{aligned} k_2 &= hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) \\ &= 1f(0 + \frac{1}{2}, 2 + \frac{5}{2}) \\ &= f(0.5, 4.5) \\ &= 0.5 + 2(4.5) + 1 \\ &= 10.5 \end{aligned}$$

$$\begin{aligned} k_3 &= hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) \\ &= 1f(0 + \frac{1}{2}, 2 + \frac{10.5}{2}) \\ &= 1f(0 + \frac{1}{2}, 2 + \frac{10.5}{2}) \\ &= 0.5 + 2(7.25) + 1 \\ &= 16 \end{aligned}$$

$$\begin{aligned} k_4 &= hf(x_0 + h, y_0 + k_3) \\ &= 1f(0 + 1, 2 + 16) \\ &= f(1, 18) \\ &= 1 + 2(18) + 1 \\ &= 38 \end{aligned}$$

$$y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 2 + \frac{1}{6} (5 + 2(10.5) + 2(16) + 38)$$

$$= 2 + \frac{1}{6} (5 + 21 + 32 + 38)$$

$$= 2 + \frac{1}{6} (96)$$

$$= 18$$

Second Iteration:-

$$\begin{aligned} x_1 &= 1, \ y_1 = 18, h = 1 \\ k_1 &= hf(x_1, y_1) \\ &= 1f(1, 18) \\ &= 1[1 + 2(18) + 1] \\ &= 1(38) \\ &= 38 \\ k_2 &= hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right) \\ &= 1f(1 + \frac{1}{2}, 18 + \frac{38}{2}) \\ &= f(1.5, 37) \\ &= 1.5 + 2(37) + 1 \\ &= 76.5 \\ k_3 &= hf\left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right) \\ &= 1f(1 + \frac{1}{2}, 18 + \frac{76.5}{2}) \\ &= 1f(1 + \frac{1}{2}, 18 + \frac{76.5}{2}) \\ &= 1.5 + 2(56.25) + 1 \\ &= 115 \\ k_4 &= hf(x_1 + h, y_1 + k_3) \\ &= 1f(1 + 1, 18 + 115) \\ &= f(2, 133) \end{aligned}$$

= 269

= 2 + 2(133) + 1

So,

$$y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$y_2 = y_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 18 + \frac{1}{6} (38 + 2(76.5) + 2(115) + 269)$$

$$= 18 + \frac{1}{6} (38 + 153 + 230 + 269)$$

$$= 18 + \frac{1}{6} (690)$$

$$= 18 + 115$$

$$= 133$$

So,

y(1) = 18y(2) = 133

Milne's Predictor Corrector Method

Question 2 Marks 10

Find the solution of

$$y' = y(x+y), \quad y(0) = 1$$

Using Milne's P-C method at x=0.4 given that y(0.1)=1.11689, y(0.2)=1.27739 and y(0.3)=1.50412

Solution:

marks 10

Here,

$$x_0 = 0$$
, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, $x_4 = 0.4$
and $y_0 = 1$, $y_1 = 1.11689$, $y_2 = 1.27739$, $y_3 = 1.50412$
 $y' = (x + y)y$
 $y_1' = (x_1 + y_1)y_1 = (0.1 + 1.11689)(1.11689) = 1.3591323$
 $y_2' = (x_2 + y_2)y_2 = (0.2 + 1.27739)(1.27739) = 1.8872032$
 $y_3' = (x_3 + y_3)y_3 = (0.2 + 1.50412)(1.50412) = 2.713613$
Now, using Predictor Formula

$$y_{4} = y_{0} + \frac{4h}{3} (2y_{1}' - y_{2}' + 2y_{3}')$$

$$y_{4} = 1 + \frac{4*0.1}{3} [2(1.3591323) - 1.8872032 + 2(2.713613)]$$

$$y_{4} = 1.8344383$$

Adam Moultan's Predictor Corrector Method

Question

Using Adam-Moulton Predictor-Corrector Formula find f(0.4) from Ordinary Differential Equation

$$y' = 1 + 2xy$$
; $y(0) = 0$; $h = 0.1$

with the help of following table.

Х	0	0.1	0.2	0.3
Y	0	0.1007	0.2056	0.3199

Solution: Here,

$$h = 0.1 \qquad f(x, y) = 1 + 2xy$$

$$y_{0}' = 1 + 2x_{0}y_{0} = 1 + 2(0)(0) = 1$$

$$y_{1}' = 1 + 2x_{1}y_{1} = 1 + 2(0.1)(0.1007) = 1.02014$$

$$y_{2}' = 1 + 2x_{2}y_{2} = 1 + 2(0.2)(0.2056) = 1.08224$$

$$y_{3}' = 1 + 2x_{3}y_{3} = 1 + 2(0.3)(0.3199) = 1.19194$$
Now, Using Adam's P-C Pair Formula:-
$$y_{n+1} = y_{n} + \frac{h}{24}(55y'_{n} - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$
Putting the values;
$$y_{4} = y_{3} + \frac{h}{24}(55y'_{3} - 59y'_{2} + 37y'_{1} - 9y'_{0})$$

$$y_4 = 0.3199 + \frac{0.1}{24} (55(1.19194) - 59(1.08224) + 37(1.02014) - 9(1))$$

$$y_4 = 0.446773833$$

Computing y'₄ *for the Corrector Formula;*

$$y'_{4} = 1 + 2x_{4}y_{4} = 1 + 2(0.4)(0.446773833)$$

 $y'_{4} = 1.3574190664$

Now Applying the Corrector Formula;

$$y_{n+1} = y_n + \frac{h}{24} (9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

$$y_4 = y_3 + \frac{h}{24} (9y'_4 + 19y'_3 - 5y'_2 + y'_1)$$

$$y_4 = 0.3199 + \frac{0.1}{24} (9(1.3574190664) + 19(1.19194) - 5(1.08224) + 1.02014)$$

 $y_4 = 0.446869048$

FAQ updated version.

Question: What is Bracketing method?

Answer: Methods such as bisection method and the false position method of finding roots of a nonlinear equation f(x) = 0 require bracketing of the root by two guesses. Such

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

methods are called bracketing methods. These methods are always convergent since they are based on reducing the interval between the two guesses to zero in on the root.

Question: What is an Open method?

Answer: In the Newton-Raphson method, the root is not bracketed. Only one initial guess of the root is needed to get the iterative process started to find the root of an equation. Hence, the method falls in the category of open methods.

Question: Explain Muller's method briefly.

Answer: In Muller's method, f(x) = 0 is approximated by a second degree polynomial; that is by a quadratic equation that fits through three points in the vicinity of a root. The roots of this quadratic equation are then approximated to the roots of the equation f(x) 0. This method is iterative in nature and does not require the evaluation of derivatives as in Newton-Raphson method. This method can also be used to determine both real and complex roots of f(x) = 0.

Question: Explain the difference between the linear and non-linear equations.

Answer: Linear Equation An algebraic equation is said to be linear in which each term is either a constant or the product of a constant and the first power of a single variable. One or more variables can be involved in the linear equations. e.g. x+3y+z=0 2x-y+4z=7 etc. Non-Linear Equation An equation is said to Non-Linear equation if it is not linear. Equations involving the power of the variable 2 or higher, transcendental, logarithmic and trigonometric equations etc lie in the category of Non-Linear equations. e.g. x2+5x+3=0 sinx+3y+9=0 xlogx-7x+4y=2 etc.

Question: Explain which value is to be choosed as X0 in N-R method.

Answer: If, for a given function, f(a)*f(b)<0, then any value between a and b inclusive can be chosen as x0.

Question: Define iterative method of solving linear equations with two examples.

Answer: Under iterative methods, the initial approximate solution is assumed to be known and is improved towards the exact solution in an iterative way. We consider Jacobi, Gauss-Seidel and relaxation methods under iterative methods.

Question: Define Pivoting.

Answer: The Gaussian elimination method fails if any one of the pivot elements becomes zero. In such a situation, we rewrite the equations in a different order to avoid zero pivots. Changing the order of equations is called pivoting.

Question: Write the two steps of solving the linear equations using Gaussian Elimination method.

Answer: In this method, the solution to the system of equations is obtained in two stages.

- i) the given system of equations is reduced to an equivalent upper triangular form using elementary transformations
- ii) the upper triangular system is solved using back substitution procedure

Question: Describe Gauss-Jordan elimination method briefly

Answer: This method is a variation of Gaussian elimination method. In this method, the elements above and below the diagonal are simultaneously made zero. That is a given system is reduced to an equivalent diagonal form using elementary transformations. Then the solution of the resulting diagonal system is obtained. Sometimes, we normalize the pivot row with respect to the pivot element, before elimination. Partial pivoting is also used whenever the pivot element becomes zero.

Question: Describe briefly Crout's reduction method.

Answer: Here the coefficient matrix [A] of the system of equations is decomposed into the product of two matrices [L] and [U], where [L] is a lower-triangular matrix and [U] is an upper-triangular matrix with 1's on its main diagonal.

Question: Describe briefly the Jacobi's method of solving linear equations.

Answer: This is an iterative method, where initial approximate solution to a given system of equations is assumed and is improved towards the exact solution in an iterative way.

Question: What is the difference between Jacobi's method and Gauss Seidal method?

Answer: The difference between jacobi's method and gauss Seidel method is that in jacobi's method the approximation calculated are used in the next iteration for next approximation but in Gauss-seidel method the new approximation calculated is instantly replaced by the previous one.

Question: What is the basic idea of Relaxation method?

Answer: We can improve the solution vector successively by reducing the largest residual to zero at that iteration. This is the basic idea of relaxation method.

Question: How the fast convergence in the relaxation method is achieved?

Answer: To achieve the fast convergence of the procedure, we take all terms to one side and then reorder the equations so that the largest negative coefficients in the equations appear on the diagonal.

Question: Which matrix will have an inverse?

Answer: Every square non-singular matrix will have an inverse.

Question: What are the popular methods available for finding the inverse of a matrix?

Answer: Gauss elimination and Gauss-Jordan methods are popular among many methods available for finding the inverse of a matrix.

Question: Explain Gaussian Elimination Method for finding the inverse of a matrix.

Answer: In this method, if A is a given matrix, for which we have to find the inverse; at first, we place an identity matrix, whose order is same as that of A, adjacent to A which we call an augmented matrix. Then the inverse of A is computed in two stages. In the first stage, A is converted into an upper triangular form, using Gaussian elimination method In the second stage, the above upper triangular matrix is reduced to an identity matrix by row transformations. All these operations are also performed on the adjacently placed identity matrix. Finally, when A is transformed into an identity matrix, the adjacent matrix gives the inverse of A. In order to increase the accuracy of the result, it is essential to employ partial pivoting

Question: What are the steps for finding the largest eigen value by power method.

Answer:

Procedure Step 1: Choose the initial vector such that the largest element is unity. Step 2: The normalized vector is pre-multiplied by the matrix [A]. Step 3: The resultant vector is again normalized.

Question: What is the method for finding the eigen value of the least magnitude of the matrix [A]?	
Answer: For finding the eigen value of the least magnitude of the matrix [A], we have to apply power method to the inverse of [A].	
Question: What is interpolation?	
Answer: The process of estimating the value of y, for any intermediate value of x, lying inside the table of values of x is called interpolation.	
Question: What is extrapolation?	
Answer: The method of computing the value of y, for a given value of x, lying outside the table of values of x is known as extrapolation.	
Question: What happens when shift operator E operates on the function.	
Answer: When shift operator E operates on the function it results in the next value of the function. $Ef(x)=f(x+h)$	f
Question: What is the basic condition for the data to apply Newton's interpolation methods?	
Answer: To apply Newton's interpolation methods, data should be equally spaced.	
Question: When is the Newton's forward difference interpolation formula used?	
Answer: Newton's forward difference interpolation formula is mainly used for interpolating the values of y near the beginning of a set of tabular values and for extrapolating values of y, a short distance backward from y0.	
Question: When is the Newton's forward difference interpolation formula used?	
Answer: Newton's forward difference interpolation formula is mainly used for interpolating the values of y near the beginning of a set of tabular values and for extrapolating values of y, a short distance backward from y0.	
Question: When the Newton's backward difference interpolation formula is used?	
Answer:For interpolating the value of the function $y = f(x)$ near the end of table of values, and to extrapolate value of the function a short distance forward from yn, Newton's backward Interpolation formula is used.Question:What is the formula for finding the value of p in Newton's forward difference interpolation formula? Answer:P=(x-x0)/h	
Question: What is the formula for finding the value of p in Newton's backward	
difference interpolation formula?	
Answer: $P=(x-xn)/n$	
which formula should be used for interpolation?	
Answer: If the values of the independent variable are not given at equidistant intervals, then the Lagrange's interpolation formula should be used.	
Question: To use Newton's divided difference interpolation formula, what should the values of independent variables be?	
Answer: To use Newton's divided difference interpolation formula, the values of independent variables should not be equally spaced.	
Question: Which difference formula is symmetric function of its arguments?	
Answer: Divided difference formula is symmetric function of its arguments.	

Question: Is the interpolating polynomial found by Lagrange's and Newton's divided difference formulae is same?

Answer: Yes. The interpolating polynomial found by Lagrange's and Newton's divided difference formulae is one and the same.

Question: Which formula involves less number of arithmetic operations? Newton or Lagrange's?

Answer: Newton's formula involves less number of arithmetic operations than that of Lagrange's.

Question: When do we need Numerical Methods for differentiation and integration?

Answer: If the function is known and simple, we can easily obtain its derivative (s) or can evaluate its definite integral However, if we do not know the function as such or the function is complicated and is given in a tabular form at a set of points x0,x1,...,xn, we use only numerical methods for differentiation or integration of the given function.

Question: If the value of the independent variable at which the derivative is to be found appears at the beginning of the table of values, then which formula should be used?

Answer: If the value of the independent variable at which the derivative is to be found appears at and near the beginning of the table, it is appropriate to use formulae based on forward differences to find the derivatives.

Question: If the value of the independent variable at which the derivative is to be found occurs at the end of the table of values, then which formula should be used?

Answer: If the value of the independent variable at which the derivative is to be found occurs at the end of the table of values, it is appropriate to use formulae based on backward differences to find the derivatives.

Question: Why we need to use RICHARDSON'S EXTRAPOLATION METHOD?

Answer: To improve the accuracy of the derivative of a function, which is computed by starting with an arbitrarily selected value of h, Richardson's extrapolation method is often employed in practice.

Question:	To apply Simpson's 1/3 rule, what should the number of intervals be?
Answer:	To apply Simpson's 1/3 rule, the number of intervals must be even.
Question:	To apply Simpson's 3/8 rule, what should the number of intervals be?
Answer:	To apply Simpson's 3/8 rule, the number of intervals must be multiple of 3.
Question:	What is the order of global error in Simpson's 1/3 rule?
Answer:	The global error in Simpson's 1/3 rule is of the order of 0(h4).
Question:	Is the order of global error in Simpson's $1/3$ rule equal to the order of
global error	in Simpson's 3/8 rule?
Answer:	Yes. The order of global error in Simpson's 1/3 rule equal to the order of
global error	in Simpson's 3/8 rule.
Question:	What is the order of global error in Trapezoidal rule?
Answer:	The global error in Trapezoidal rule is of the order of 0(h2).
Question:	What is the formula for finding the width of the interval?
Answer:	Width of the interval, h, is found by the formula h=(b-a)/n
Question:	What type of region does the double integration give?
Δ	Double integration gives the area of the nexten gular region

Question: and Simpso	Compare the accuracy of Romberg's integration method to trapezoidal n's rule.	
Answer: Simpson's ru	Romberg's integration method is more accurate to trapezoidal and ale	
Question:	What is the order of global error in Simpson's 3/8 rule?	
Answer:	The global error in Simpson's 3/8 rule is of the order of 0(h4).	
Question: to another?	Which equation models the rate of change of any quantity with respect	
Answer: with respect	An ordinary differential equation models the rate of change of any quantity to another.	
Question:	By employing which formula, Adam-Moulton P-C method is derived?	
Answer: difference in	Adam-Moulton P-C method is derived by employing Newton's backward terpolation formula.	
Question:	What are the commonly used number systems in computers?	
Answer:	Binary Octal Decimal Hexadecimal	
Question: needed to re Answer:	If a system has the base M, then how many different symbols are epresent an arbitrary number? Also name those symbols. M 0, 1, 2, 3,, M-1	
Ouestion:	What is inherent error and give its example.	
Answer: It is that quantity of error which is present in the statement of the problem itself, before finding its solution. It arises due to the simplified assumptions made in the mathematical modeling of a problem. It can also arise when the data is obtained from certain physical measurements of the parameters of the problem. e.g. if writing 8375 instead of 8379 in a statement lies in the category of inherent error.		
Question:	What is local round-off error?	
Answer: computer, w form unders committed a	At the end of computation of a particular problem, the final results in the hich is obviously in binary form, should be converted into decimal form-a tandable to the user-before their print out. Therefore, an additional error is t this stage too. This error is called local round-off error.	
Question:	What is meant by local truncation error?	
Answer: truncating tl	Retaining the first few terms of the series up to some fixed terms and ne remaining terms arise to local truncation error.	
Question:	What is transcendental equation and give two examples.	
Answer: trigonometri is a transcer of transcend	An equation is said to be transcendental equation if it has logarithmic, c and exponential function or combination of all these three. For example it idental equation as it has an exponential function These all are the examples ental equation.	
Question:	What is meant by intermediate value property?	
Answer: f(b) have opp is a polynom at least one	If $f(x)$ is a real valued continuous function in the closed interval if $f(a)$ and posite signs once; that is $f(x)=0$ has at least one root such that Simply If $f(x)=0$ hial equation and if $f(a)$ and $f(b)$ are of different signs ,then $f(x)=0$ must have real root between a and b.	
Question:	What is direct methods of solving equations?	
Answer	Those methods which do not require any information about the initial	

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

approximation of root to start the solution are known as direct methods. The examples of
direct methods are Graefee root squaring method, Gauss elimination method and Gauss Jordan method. All these methods do not require any type of initial approximation.

Question: What is Iterative method of solving equations?

Answer: These methods require an initial approximation to start. Bisection method, Newton raphson method, secant method, jacobi method are all examples of iterative methods

Question: If an equation is a transcendental, then in which mode the calculations should be done?

Answer: All the calculations in the transcendental equations should be done in the radian mode.

Question: What is the convergence criterion in method of iteration?

Answer: If be a root of f(x) = 0 which is equivalent to I be any interval containing the point x= and will converge to the root provided that the initial approximation is chosen in I

Question: When we stop doing iterations when Toll is given?

Answer: Here if TOL is given then we can simply find the value of TOL by subtracting both the consecutive roots and write it in the exponential notation if the required TOL is obtained then we stop.

Question: How the value of h is calculated in interpolation?

Answer: There are two types of data in the interpolation one is equally spaced and other is unequally spaced. In equally spaced data we need to calculate the value of h that is calculated by subtracting any two consecutive values and taking their absolute value.

Question: What is an algebraic equation?

Answer: An algebraic equation is an equation which is purely polynomial in any variable. Supposed $x^2+3x+2=0$, $x^4+3x^2=0$, $y^3+6y^2=0$ all are algebraic equations as these are purely polynomial in x and y variable.

Question: What is Descartes rule of signs?

Answer: The number of positive roots of an algebraic equation f(x) = 0 can not exceed the no of changes in signs. Similarly the no of negative roots of negative roots of and algebraic equation can not exceed the no of changes in sign of equation f(-x) = 0.

Question: What are direct methods?

Answer: The numerical methods which need no information about the initial approximation are known as direct methods like Graffee's root squaring method.

Question: What is meant by iterative methods?

Answer: The methods which need one or more iterations are known as iterative methods like bisection method, Newton raphson method, and many other methods.

Question: What is graphically meant by the root of the equation?

Answer: If the graph of a function f(x) = 0 cuts the x-axis at a point a then a is known as the root of the equation.

Question: Q. What is the difference between open and bracketing method?

Answer: In open methods we need only one initial approximation of the root that may be any where lying and if it is not very close then we have to perform more iteration and the example of open method is Newton raphson method. In bracketing method we bracket the root and find that interval in which root lies means we need two initial approximations for the root finding. Bisection method is an example of the bracketing method.

Question: Condition for the existence of solution of the system of equations.

Answer: If the |A| is not equal to zero then the system will have a unique solution if |A|=0 then the system will have no solution

Question: Should the system be diagonally dominant for gauss elimination method?

Answer: The system of equation need not to be diagonally dominant for Gauss elimination method and gauss Jordan method for both the direct method it is not necessary for the system to be diagonally dominant .it should be diagonally dominant for iterative methods like jacobie and gauss seidel method.

Question: What is meant by diagonally dominant system?

Answer: A system a1x+b1y+c1z=d1, a2x+b2y+c2z=d2, a3x+b3y+c3z=d3 is said to be diagonally dominant if the following condition holds. |a1| => (greater or equal)

|b1|+|c1| $|b2| \Rightarrow$ (greater or equal) |a2|+|c2| $|c3| \Rightarrow$ (greater or equal) |a3|+|b3|

Question: State the sufficient condition for the convergence of the system of equation by iterative methods.

Answer: A sufficient condition for convergence of iterative solution to exact solution is $|a1| \Rightarrow$ (greater or equal) $|b1|+|c1| |b2| \Rightarrow$ (greater or equal) $|a2|+|c2| |c3| \Rightarrow$ (greater or equal) |a3|+|b3| For the system a1x+b1y+c1z=d1, a2x+b2y+c2z=d2, a3x+b3y+c3z=d3 Similarly for the system with more variables we can also construct the same condition

Question: The calculation for numerical analysis should be done in degree or radians.

Answer: All the calculation for numerical analysis should be done in radians not in degrees set your calculator in radians mode and suppose the value of pi=3.14.

Question: How we can identify that Newton forward or backwards interpolation formula is to be used.

Answer: If the value at which we have to interpolate is in the start of the table then we will use Newton's forward interpolation formula if it is at the end of the table then we will use the Newton's backward interpolation formula.

Question: What is meant precision and accuracy?

Answer: Precision and accuracy are two terms which are used in numerical calculations by precision we mean that how the values in different iterations agree to each other or how close are the different values in successive iterations. For example you have performed 3 different iterations and result of all the iteration are

1.32514,1.32516,31.32518 these three values are very precise as these values agree with each other . Accuracy means the closeness to the actual value. Suppose that you have calculated an answer after some iteration and the answer is 2.718245 and the actual answer is 2.718254 and the answer calculated is very accurate but if this answer is 2.72125 then it is not accurate.

Question: What is the condition that a root will lie in an interval.

Answer: Suppose that you have a function f(x) and an interval [a,b]and you calculate both f(a) and f(b) if f(a)f(b) < 0 then there must exist a root for this function in this interval. In simple words f(a) and f(b) must have opposite signs.

Page No.74

Question: How the divided difference table is constructed?

First difference Second difference Third difference 1 0.2 y0 Answer: х y $v_{1-v_{0}/x_{1-x_{0}=s_{v_{0}}}$ sv1- sv0/x2-x0=s2v0 s2y0-s2y1/x3-x0=s3y0 s3y1 $s_{3y0/x4x0} = s_{4y0} 2$ 0.69 y1 v2-v1/x2-x1=sv1 sv2- sv1/x3-x1=s2v1 s2y2y3-y2/x3-x2=sy2 sy3- sy2/x4-x1=s2y2 $s_{2y1/x4-x1=s_{3y1}}$ 3 0.985 y2 4 2.3651 y4 This is the complete table 1.2365 y3 y4-y3/x4-x3=sy3 5 showing the central differences . Here s stands for difference

Question: What is Gauss-seidel Method

Answer: It is also an iterative method and in this we also check either the system is diagonally dominant and, if so then we proceed on the same lines as in the Jacobi's method. The difference in both is when we calculate a value of any variable that is instantly replaced by the previous value. If we have initial values like x1=0,x2=0 and x3=0 in the case of three variables in the first iteration we will use all the three values to calculate x1 but to calculate the value of x2 we will use the recent value of x1 which is calculated in the first iteration.

Question: What is partial and full pivoting?

Answer: Partial and full pivoting, In gauss elimination method when you have any of diagonal element aii zero it means the solution does not exist to avoid this we change the equation so that a non zero pivot is achieved .Now you have an argument matrix in which he elements in the first column are 1,3,4 respectively here in case of partial pivoting we will replace first element with the last element it is done by replacing the first equation with last equation it is known as partial pivoting. In full pivoting we change rows and columns but that is not implemented manually it is used in computers.

Question: How the initial vector is choose in power method?

Answer: Choose the initial vector such that the largest element is unity. But no problem with this you will precede with this vector as it is and will not change it. In the given question the initial vector is provided so you have to proceed with the given vector and will normalize this vector and normalizing this vector you will keep in mind that the greatest value should be unity. An eigenvector Vis said to be normalized if the coordinate of largest magnitude is equal to unity Actually this condition is for the normalization of the vectors when you have to normalize the vector you keep in mind that the larget entery in the vector must be 1 and so you take the largest element and divide the remaining values by the greatest value.

Question: what is the relation ship between p=0 and non zero p in interpolation.

Answer: fp=fo+pDfo+1/2(p2-p)D2fo+1/6(p3-3p2+2p)D3fo+1/24(p4-6p3+11p2-6p)D4fo+... This is the interpolation formula For the derivative you will have to take the derivative of this formula w.r.t p and you will get $fp=1/h{Dfo+1/2(2p-1)D2fo+1/6(3p2-6p+2)D3fo+...}$ Now put here p=0 $fp=1/h{Dfo+1/2(0-1)D2fo+1/6(0-0+2)D3fo+...}$ So the formula becomes $fp=1/h{Dfo+D2fo/2+D3fo/3+...}$ so this is the relation ship between non zero and zero p no when you have to calculate p the you use formula p=x-xo/h so this is the impact of x.

Question: What is chopping and Rounding off?

Answer: Chopping and rounding are two different techniques used to truncate the terms needed according to your accuracy needs. In chopping you simply use the mentioned number of digits after the decimal and discard all the remaining terms. Explanation (1/3 - 3/11) + 3/20 = (0.333333... - 0.27272727..) + 0.15 = (0.333 - 0.272) + 0.15This is the three digit chopping.

Question: When the forward and backward interpolation formulae are used?

Answer: In interpolation if we have at the start then we use the forward difference formula and the formula to calculate p is x-x0/h. If the value of x lies at the end then we use Newton's backward formula and formula to calculate the value of p is x-xn/h. Now I come to your question as in this case the value lies at the end so 6 will be used as the xn. This procedure has been followed by the teacher in the lectures. But some authors also use another technique that is if you calculate the value of p and that is negative then the origin is shifted to that value for which the value of p becomes positive. And then according to that origin the values of differences are used and you need not follow this procedure.

Question: What is forward and backward difference operator and the construction of their table.

For forward Dfr =fr+1 –fr Df0 = f1-f0 In terms of y Dyr+1=yr+1-yr D stands Answer: for the forward difference operator For backward Dfr =fr -fr-1 Df1 = f1-f0 In terms of y Dy1=y1-y0 Here D stands for backwards operator Now the construction of the difference table is based on X Υ 1st forward 2nd forward 3rd forward x1 Y1 Y2-Y1=Dv0 \mathbf{x}^2 Y2 Y3-Y2=Dv1 x3 Y4-Y3=Dv2 x4 Now consider Y3 Y4 the construction of table for the backward table X 1st forward 2nd forward 3rd Y forward x1 Y1 Y2-Y1=Dv1 \mathbf{x}^2 Y2 Y3-Y2=Dv2 x3 Y3 Y4-Y3=Dv3 x4 Y4

Dear student this is the main difference in the construction of the forward and backwards difference table when you proceed for forward difference table you get in first difference the value Dy0 but in the construction of backwards difference table in the first difference you get Dy1 and in the second difference in the forward difference table you get D2 y0 and in the backward difference table the first value in the second difference is D2 y1. I think so you have made it clear.

Question: What is Jacobi's method?

Answer: Jacobi's Method It is an iterative method and in this method we first of all check either the system is diagonally dominant and, if the system is diagonally dominant then we will calculate the value of first variable from first equation in the form of other variables and from the second equation the value of second variable in the form of other variables and so on. We are provided with the initial approximations and these approximations are used in the first iteration to calculate first approximation of all the variables. The approximations calculated in the first iteration are used in the second iteration to calculate the second approximations and so on.

Question: what is Simpson's 3/8th rule.

Answer: The general formula for Simpson's 3/8th rule is

3h/8[f0+3(f1+f2)+2f3+(3f4+f5)+2f6+...+3(fn-2+fn-1)+fn] Now if we have to calculate the integral by using this rule then we can simply proceed just write first and last vale and distribute all the remaining values with prefix 3 and 2 Like you have f0,f1,f2,f3,f4 Then the integral can be calculated as 3h/8[f0+f4+3(f1+f2)+2f4] If we have values like f0,f1,f2,f3,f4,f5 Then integral can be calculated as 3h/8[f0+f4+3(f1+f2)+2f4] If we have values like f0,f1,f2,f3,f4,f5 Then integral can be calculated as 3h/8[f0+f4+3(f1+f2)+2f4] If we have values like proceeding in this fashion we can calculate the integral in this fashion

Question: what is classic runge-kutta method

Answer: The fourth order Runge-Kutta method is known as the classic formula of classic Runge-Kutta method. $y_{1}=y_{1}+1/6(k_{1}+2k_{2}+2k_{3}+k_{4})$ Where $k_{1}=hf(x_{1},y_{1})$ $k_{2}=hf(x_{1}+h/2+y_{1}+k_{1}/2)$ $k_{3}=hf(x_{1}+h/2,y_{1}+k_{2}/2)$ $k_{4}=hf(x_{1}+h,y_{1}+k_{3})$

Question: What is meant by TOL?

Answer: The TOL means the extent of accuracy which is needed for the solution. If you need the accuracy to two places of decimal then the TOL will be 10-2 .similarly the 10-3 means that the accuracy needed to three places of decimal. Suppose you have the root from last iteration 0.8324516 and 0.8324525 if we subtract both and consider absolute value of the difference 0.0000009 now it can be written as 0.09*10-5 so the TOL in this case is 10-5.similarly if we have been provided that you have to for the TOL 10-2 you will check in the same way. In the given equation you will solve the equation by any method and will consider some specific TOL and try to go to that TOL. Some time no TOL is provided and you are asked to perform to some specific no of iterations.

Question: what is meant by uniqueness of LU method.

Answer: An invertible (whose inverse exists) matrix can have LU factorization if and only if all its principal minors(the determinant of a smaller matrix in a matrix) are non zero .The factorization is unique if we require that the diagonal of L or U must have 1's.the matrix has a unique LDU factorization under these condition . If the matrix is singular (inverse does not exists) then an LU factorization may still exist, a square matrix of rank (the rank of a matrix in a field is the maximal no of rows or column) k has an LU factorization if the first k principal minors are non zero. These are the conditions for the uniqueness of the LU decomposition.

Question: how the valu of h is calculated from equally spaced data.

Answer: Consider the following data x y 1 1.6543 2 1.6984 3 2.4546 4 2.9732 5 $3.2564 \ 6 \ 3.8765$ Here for h=2-1=3-2=1 x y 0.1 1.6543 0.2 1.6984 0.3 2.4546 0.4 2.9732 0.5 3.2564 0.6 3.8765 Here for the calculation of h =0.2-0.1=0.3-0.2=0.1 I think so that you may be able to understand .

Glossary (Updated Version)

Absolute Error :

The absolute error is used to denote the actual value of a quantity less it's rounded value if x and x^* are respectively the rounded and actual values of a quantity, then absolute error is defined by $AE=|x-x^*|$

Accuracy :

The Extent of the closeness between the actual value and estimated value is known as accuracy. Suppose you have taken readings like 2.1234,2.1236and 2.1238 and 2.45,2.52,2.63 Now if the actual root is 2.65 then the second values are more accurate and not precise but first set of values is precise but not accurate as it differs from the actual value.

Algebraic equation :

The equation f(x)=0 is known as algebraic equation if it is purely a polynomial in x. Like f(x)=3, $f(x)=x^3-3x-4$ are some examples of algebraic equations and the if variable is changed to y x or any one then under the same conditions it will be algebraic.

Bisection method :

It is a bracketing method which is used to locate the root of an equation and it make use of intermediate value property to locate the interval in which the root lies, formula which is used is (a+b)/2 where a and b are points such that f(a)f(b)<0.

Bracketing Method :

The iterative methods which require two initial approximation for it's first iteration are known as bracketing methods. Bisection method is the example of the bracketing method as it requires a interval for the approximation of the root.

Crout's Method :

This method is used to solve the system of the equations by decomposing the system into two matrices L and U where L is a lower triangular matrix and U is an upper triangular matrix. In U all the elements in the main diagonal are 1.

Descartes rule of signs : The no of positive roots of an algebraic equation f(x)=0 with real coefficients cannot exceed the no of changes in the in sign of the coefficients in the polynomial f(x)=0, similarly the no of negative roots of f(x)=0 can not exceed the no of changes in the sign of the coefficients of f(-x)=0

Direct methods :

These are the methods which do not need the knowledge of the initial approximation are known as direct methods.

Gauss Elimination Method :

It is a direct method which is used to solve a system of equations

Gauss Seidel iterative method :

It is an iterative method in which an initial approximation is given. First of all system should be checked either it is diagonally dominant or not if it is not then it is made diagonally dominant. Secondly the first variable is calculated in terms of other variables from first equation and Second variable from second equation and so on .the previous value of the variable is replaced by new value instantly as it is obtained. This is the difference in the gauss seidel and jacobie iterative method.

Graeffee's root squaring method :

This method is used to find all the roots of the polynomial equation.

Intermediate value property :

If for an equation f(x)=0 for two values a and b we have such that f(a)f(b)<0 then there must exist a root between a and b in the interval [a,b].

Inverse of a matrix :

The matrix B is said to be inverse of a matrix A if the product of and B is I identity matrix.

Iterative methods :

Iterative methods are those type of methods which always require an initial approximation to start an iteration

Jacobie's iterative method: :

It is an iterative method in which an initial approximation is given. First of all system should be checked either it is diagonally dominant or not if it is not then it is made diagonally dominant. Secondly the first variable is calculated in terms of other variables from first equation and Second variable from second equation and so on after first iteration in the second iteration all the variables are replaced by the previous one.

Muller's Method :

In Muller's method f(x)=0 is approximated by a second degree polynomial, that is by quadratic equation that fits through three points in the vicinity of a root .Then roots of this quadratic equation are then approximated to the roots of equation f(x)=0

Newton Raphson Method. :

It is an open method which is used to locate a root of the equation, it needs only one initial approximation for it's first iteration. xn+1=xn-(fxn/f'xn)

Non singular matrix :

A matrix is said to be non singular if the determinant of the matrix is non zero. |A| is not equal to zero and the inverse of non singular exists.

Open methods :

The methods which require only one initial approximation to start the first iteration, for example the Newton's Raphsom method is known as the open method as it requires only one initial approximation.

Pivoting :

If any of the pivot elements in gauss elimination become zero then this method fails so to Avoid such type of situation equation are rearranged to get rid of zero pivot element, this procedure is known as pivoting. Polynomial:

An expression of the form $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$ where n is a

positive integer and $a_0, a_1, a_2 + \dots + a_n$ are real constants, such type of expression is called an nth degree polynomial in x if $a_0 \neq 0$

Precision:

The extent of closeness of different measurement taken to estimate a certain value. Suppose you have done different iterations to measure the root of an equation and take different values as 2.1234, 2.1236, and 2.1238 these all the values are very close to each other so these are very precise.

Regula - Falsi method :

It is also an iterative method and is a bracketing method and use intermediate value property to get it's initial guess. The formula used for this is xn+1=xn-(xn-xn-1/f(xn)-f(xn-1))

Relative Error : It is the ratio of the absolute error to the actual value of the quantity. Thus $RE=AE=AE \setminus |x^*|$

Relaxation method :

It is also an iterative method and in this method you solve the system of equation by making the greatest residual to zero.

Root : If you have an equation f(x)=0 then the no a is said to be the root of the equation if f(a)=0 Suppose you have an equation $f(x)=x^2-4$ the 2 is a root of the equation as f(2)=4-4=0

Secant Method :

The secant method is also an open method and it takes two initial values for it's first approximation, the formula used for this is known as xn+1=(xn-1f(xn)-xnf(xn-1))/(f(xn)-f(xn-1))

Significant digits :

A significant digit in an approximate no is a digit, which gives reliable information about the size of the number. In other words a significant digit is used to express accuracy, that Is how many digits in the no have meaning.

Singular matrix :

A matrix s said to be a singular matrix if the determinant of the matrix is zero |A|=0, the inverse of the singular matrix do not exist.

Transcendental equation :

An equation f(x) = 0 is said to be transcendental equation if it contains trigonometric, logarithmic and exponential functions

Truncation Error :

It is defined as the replacement of one series by another series with fewer terms. The error arising by this approximation is known as truncation error.

Important Formula For MTH603

Bisection Method

$$x2 = \frac{x0 + x1}{2}$$

Muller Method

$$x = \frac{x0 - 2c}{+b - \sqrt{b^2 - 4ac}}$$

in this formula x_{0,x_1} , x_2 will be and U will just put the values according to the given formulas.

$$a = \frac{h2f1 - (h1 + h2)f0 + h1f2}{h1h2(h1 + h2)}$$
$$b = \frac{f1 = f0 - ah1^2}{h1}$$
$$c = f(x0)$$
$$h1 = x1 - x0$$
$$h2 = x0 - x2$$

Regula Falsi Method (Method of False position)

$$x3 = x2 - \frac{x2 - x1}{f(x2) - f(x1)} f(x2)$$

Newton Rophson method

$$x1 = x0 - \frac{f(x0)}{f(x0)}$$

Secant Method

$$x2 = \frac{x0f(x1) - x1f(x0)}{f(x1) - f(x0)}$$

Newton's Formula

$$x1 = \frac{1}{2}(x0 + \frac{n}{x0})$$

in this formula x0= 2 perfect square near to 12 such like 9 and 16

Graffee root squaring method

$$f(x)f(-x) = a_3^2 x^6 - (a_2^2 - 2a_1a_3)x^4 + (a_1^2 - 2a_0a_2)x^2 - x_0^2$$

the truncation error (TE) is given by

$$\mathrm{TE} \le \frac{x^{2n+2}}{(2n+2)!}$$

The TE is independent of the computer used.

Short Questions Paper

Set-01

$$\int \frac{2x}{x^2+1} dx$$

Approximate the integral $\frac{1}{1} x^2 + 1$ using Simpson's 1/3 rule and calculate the percentage error. (Take result up to 4 decimal places)

Note: In order to get full marks do all necessary steps.

Construct a forward diffe	erence table for the	following values
---------------------------	----------------------	------------------

x	0.1	0.3	0.5	0.7	0.9	1.1	1.3
y	0.003	0.067	0.148	0.248	0.37	0.518	0.697

Note : In order to get full marks do all necessary steps.

Solve the system

4x + 3y = 243x + 4y - z = 30-y + 4z = -24

by Gauss Seidal Method, taking (0, 0, 0)^t as initial approximation(Two iterations only and take result up to 4 decimal places)

Note : In order to get full marks do all necessary steps

Let $f(x) = x + \frac{2}{x}$, use cubic Lagrange interpolation based on the nodes $x_0 = 0.5$, $x_1 = 1$, $x_2 = 2$ and $x_3 = 2.5$ to approximate f(1.5) and f(1.3).

Note : In order to get full marks do all necessary stepsSolution

Approximate the Dominant Eigenvalue and corresponding Eigenvector for the matrix

 $\begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$

by using Power Method. Start with $X_0 = (1,1,1)^t$. (Five iterations only and take result up to 4 decimal places)

Note : In order to get full marks do all necessary steps

Evaluate the

Evaluate the

Evaluate the

Set-02Question No: 31 (Marks: 2)F(h) = 256.2354 and $F(\frac{h}{2}) = 257.1379$, then find $F_1(\frac{h}{2})$ using Richardson's extrapolation limit.

Question No: 32 (Marks: 2)

integral

$$\int_{0}^{\frac{\pi}{2}} (\cos x + 2) dx$$

Using Simpson's 3/8 rule

Take h= $\frac{\pi}{4}$

Question No: 33 (Marks: 2)

general formula for Modified Euler's method of solving the given differential equation.

Question No: 34 (Marks: 3)

integral

 $\int_{0}^{4} x^{2} dx$

Using Trapezoidal rule Take h=1

Question No: 35 (Marks: 3)

integral

 $\int (\log x + 2) dx$

Using Simpson's 3/8 rule Take h=1

Question No: 36 (Marks: 3)

Write a

Find

Evaluate the

Use Runge-

Page No.83

formula for finding the value of k_3 in Fourth-order R-K method.

Question No: 37 (Marks: 5)

Newton's forward difference table from the following data.

x	0.0	0.1	0.2	0.3	0.4
f(x)	1	0.9048	0.8187	0.7408	0.6703

Question No: 38 (Marks: 5)

integral

$$\int_{0}^{3} (x^{2} + x) dx$$

Using Simpson's 3/8 rule

Take h=1

Question No: 39 (Marks: 5)

Kutta Method of order four to find the values of k_1, k_2, k_3 and k_4 for the initial value problem

$$y' = \frac{1}{2}(2x^3 + y), y(1) = 2$$

taking $h = 0.1$

Set-03

Question:

Answer:

Multiple Choice Question

Set-01

Question No: 1 (Marks: 1) - Please choose one

Symbol used for

forward differences is

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Question No: 2 (Marks: 1) - Please choose one

The relationship

between central difference operator and the shift operator is given by

$$\delta = E - E^{-1}$$

$$\delta = E + E^{-1}$$

$$\delta = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$$

$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$

Question No: 3 (Marks: 1) - Please choose one

Muller's

method requires -----starting points

Question No: 4 (Marks: 1) - Please choose one

terms in Newton's forward difference formula, we obtain a polynomial of degree ---- agreeing with $x_{0,x_{1},...,x_{r}}$ at

Question No: 6 (Marks: 1) - Please choose one

			P in Newton's

forward difference formula is defined as

 $p = \left(\frac{x - x_0}{h}\right)$ $p = \left(\frac{x + x_0}{h}\right)$

Question No: 7 (Marks: 1) - Please choose one

Newton's divided difference interpolation formula is used when the values of the independent variable are

Equally spaced

Not equally spaced

► Constant

None of the above

Question No: 9	(Marks: 1)	- Please choose one
----------------	------------	---------------------

Given the

following data

Page No.87

x	0	1	2	4
f(x)	1	1	2	5

 $\text{Value of } \begin{array}{c} f(2,4) \\ \text{is} \end{array}$

▶ 1.5

► 3

▶ 2

▶ 1

Question No: 10 (Marks: 1) - Please choose one

		If $y(x)$ is
p,	(x)	-
approximated by a polynomial	of degree n then the error is given by	

Question No: 11 (Marks: 1) - Please choose one

- ▶ n-1
- ▶ n+2
- ▶ n
- ▶ n+1

Question No: 12 (Marks: 1) - Please choose one

Differential

operator in terms of forward difference operator is given by

$$D = \frac{1}{h} (\Delta + \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} + \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} + ...)$$

$$D = \frac{1}{h} (\Delta + \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} + \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} + ...)$$

$$D = \frac{1}{h} (\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \frac{\Delta^5}{5} - ...)$$
$$D = \frac{1}{h} (\Delta - \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} - \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} - ...)$$

Question No: 13 (Marks: 1) - Please choose one

Finding the first

derivative of f(x) at x = 0.4 from the following table:

x	0.1	0.2	0.3	0.4
f(x)	1.10517	1.22140	1.34986	1.49182

Differential operator in terms of -----will be used.

- ► Forward difference operator
- Backward difference operator
- ► Central difference operator
- None of the given choices

Question No: 14 (Marks: 1) - Please choose one

For the given table of values

x	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	0.425	0.475	0.400	0.452	0.525	0.575

 $f^{\prime}(0.1)$, using two-point equation will be calculated as.....

► -0.5

▶ 0.5

▶ 0.75

► -0.75

Question No: 15 (Marks: 1) - Please choose one

In Simpson's 1/3 rule, f(x) is of the form

 $\blacktriangleright ax+b$

 $ax^2 + bx + c$

While

For the given

- $ax^3 + bx^2 + cx + d$
- $ax^4 + bx^3 + cx^2 + dx + e$

Question No: 16 (Marks: 1) - Please choose one

$$I = \int_{a}^{b} f(x) dx$$

integrating , h , width of the interval, is found by the formula-----.

Question No: 17 (Marks: 1) - Please choose one

_____ To apply Simpson's 1/3 rule, valid number of intervals are.....

Question No: 18 (Marks: 1) - Please choose one

table of values

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Page No.91

x	02	0.3	0.4	0.5	0.6	0.7
f(x)	0.425	0.475	0.400	0.452	0.525	0.575

 $f^{\prime\prime}(0.2)$, using three-point equation will be calculated as $\ldots\ldots$

▶ 12.5

▶ 7.5		
► -12.5		

Question No: 20 (Marks: 1) - Please choose one

To apply

Simpson's 3/8 rule, the number of intervals in the following must be

Question No: 21 (Marks: 1) - Please choose one

Page No.92

If the root of the

given equation lies between a and b, then the first approximation to the root of the equation by bisection method is

Question No: 22 (Marks: 1) - Please choose one

.....lies in the category of iterative method.

Bisection Method

Regula Falsi Method

- Secant Method
- ► None of the given choices

Question No: 23 (Marks: 1) - Please choose one

For the equation

 $x^3 + 3x - 1 = 0$, the root of the equation lies in the interval.....

▶ (1, 3)

Rate of change

Question No: 24 (Marks: 1) - Please choose one

of any quantity with respect to another can be modeled by

An ordinary differential equation

► A partial differential equation

► A polynomial equation

None of the given choices

Question No: 25 (Marks: 1) - Please choose one

lf

$$\frac{dy}{dx} = f(x, y)$$

Then the integral of this equation is a curve in

- ► xt-plane
- yt-plane
- ► xy-plane

Question No: 26 (Marks: 1) - Please choose one

Page No.94

Page No.95

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

 $k_{2} = hf(x_{n} + \frac{h}{3}, y_{n} + \frac{k_{1}}{3})$ $k_{2} = hf(x_{n} - \frac{h}{3}, y_{n} - \frac{k_{1}}{3})$ $k_{2} = hf(x_{n} - \frac{h}{2}, y_{n} - \frac{k_{1}}{2})$

Question No: 29 (Marks: 1) - Please choose one

Runge-Kutta method, k_4 is given by

$$k_{3} = hf(x_{n} + 2h, y_{n} + 2k_{3})$$

$$k_{3} = hf(x_{n} - h, y_{n} - k_{3})$$

 $k_3 = hf(x_n + h, y_n + k_3)$

► None of the given choices

Question No: 30 (Marks: 1) - Please choose one

Adam-Moulton

In fourth order

P-C method is derived by employing

Newton's backward difference interpolation formula

Newton's forward difference interpolation formula

Newton's divided difference interpolation formula

► None of the given choices

Set-02
/wEPDwUKMTY2I /wEWBgK+3MqI/
Question # 1 of 8 (Start time: 01:24:49 PM)Total Marks: 1
The need of numerical integration arises for evaluating the definite integral of a function that has no explicit or whose antiderivative is not easy to obtain.
Select correct option:
antiderivative derivative derivatives derivatives derivatives derivatives
Click here to Save Answer & Move to Next Question
/wEPDwUKMTY2I /wEWBgLy4ZCp#
Time Left 59 sec(s)
Question # 2 of 8 (Start time: 01:26:18 PM)Total Marks: 1
In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy.
Select correct option:

Page No.98

The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used to model the curve in trapezoidal Rule.

Sele	ect correct option:		
0	straight lines	<u>^</u>	
	4	×	
0	curves	<u>^</u>	
	4	Þ	
0	parabolas	<u>_</u>	
	4	Þ	
0	constant	<u>^</u>	
	4	Þ	
			Click here to <u>Save</u> Answer & Move to Next Question
/wepd	DwUKMTY2I		
/wEW	BgK6oIaxB		
	Time Left $\begin{array}{c} 83\\ sec(s) \end{array}$		
Questio	on # 6 of 8 (Start time: 01:31:18 PM)		Total Marks: 1

An improper integral is the limit of a definite integral as an endpoint of the interval of integration approaches either a specified real number or 8 or -8 or, in some cases, as both endpoints approach limits.

Sele	ect correct option:	
0	TRUE	-
	4	•

MTH603-Numeri	cal Analysis_	Muhamr	nad Ishfaq	Page No.99
C FALSE	A			
4	×			
			Click here to <u>S</u> ave Answer &	Move to Next Question
/wEPDwUKMTY2I				
Time Left 84				
sec(s) Question # 7 of 8 (Start time: 01:32	:33 PM)			Total Marks: 1
Euler's Method numerically computes	the approximate derivative of a	function.		
Select correct option:				
C FALSE	▲ ▼			
4	Þ			
	A V F			
			Click here to <u>S</u> ave Answer &	Move to Next Question
/wEPDwUKMTY2I				
/wEWCgKK6eLRI				
Time Left 84 sec(s)				
Question # 8 of 8 (Start time: 01:33	:57 PM)			Total Marks: 1

If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to _ .

Select correct option: ►

0	constant	A	
	4	v	
0	finite	<u>^</u>	
	4	T	
0	infinity		
	4	v	
0	zero		
	4	*	
		•	Click here to Save Answer & Move to Next Question

Set-03

No.	Questions					
1	Find value of given	data by Adam Moul	tan's method		10	
2	Find value of given	data by Dividend Di	ifference Composite	method	10	
3	B Draw backward difference tables for given Data					
	X					
	У					
	X					
	У					

4	Write Simpson's 1/3 formula	2
5	Find value by Euler's Method	3
6	Find value of K1 by 2 nd Order R-K method	2
7	Convergence is used when	1
8	Bisection method is method	1
	 Bracketing Method Open Random none http://vustudents.ning.com/ 	
9	Newton Raphson method is method	1
	 Bracketing Method Open Random none 	
10	Eigenvalue is	
	 Real Vector odd even 	1
11	Find value of y'(1) by Euler's Method taking h=1	2
12	Find value of y'(3) from given table.	2
	X V	
13	Find value of v'(0.3) by Lagrange's Method	3
15	x y	5
14	For Simpson's 1/3 rule no.of intervals must be	1
	 1 3 5 8 	

15	For Simpson's	1/3 rule	valid no.	of interva	ls are			1
	• 1							
	• 3							
	• 5							
1.6	• 8	2 /0 1		1	. 1			
16	For Simpson's	3/8 rule	no.of inte	ervals mu	st be			1
	• 10							
	• 11							
	• 12							
	• 14							
	http://vustuden	ts.ning.c	om/					
17	Find the value	of y'(1) f	from give	en forwar	d differer	nce table		2
				A	. 2	. 3	1	
		х	У	Δy	Δy^2	Δy^{3}		

Numerical analysis mth603 paper

Numerical Analysis numerical paper 2009

The paper was very easy.

The mcq's were really easy.

Most of the mcq's were from the last 5 lecture.

and from jacobi's method and other's.

then the logical mcq's like

s inverse * s = I

it was repeated twice.

one 5 mark question was from newton's rapson method

one 10 mark question was from lecture 11 page 69 example

best of luck

Set-04

1

/w EPDw UKMTY:

/w EWBgKPm46n

Time Left 89 sec(s)

Total Marks: 1

Total Marks: 1

Quiz Start Time: 04:40 PM

Question # 1 of 10 (Start time: 04:40:08 PM)

The determinant of a diagonal matrix is the product of the diagonal elements.

Sele	ect correct option:		-	
0	TRUE	A		
	4	*		
0	FALSE	A		
		▼		
				Click here to Save Answer & Move to Next Question
/w EPD	W UKMTY:			
/w EWE	3gKin4OcE			

Quiz Start Time: 04:40 PM

Question # 2 of 10 (Start time: 04:40:58 PM)

Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent.

🕨 Sel	ect correct c	ption:		
0	TRUE		A	
			V V	
0	FALSE		A	
	4		v b	
				Click here to Save Answ er & Move to Next Question
/w EPD	Dw UKMTY:			
/w EW	BgKx743v			

Page No.104

FALSE FALSE Click here to Save Answer & Move to Next Question /w EPDw UKMTY: /w EVVBgKjyL19A Time Left $\frac{89}{sec(s)}$ • Quiz Start Time: 04:40 PM

Question # 5 of 10 (Start time: 04:42:58 PM)	Total Marks: 1
The Jacobi's method is a method of solving a matrix equation on a diagonal.	matrix that has zeros along its main
Select correct option:	
O no	
▼ ↓	
C atleast one	
▼	
► .	Click here to Save Answer & Move to Next Question
/w EPDw UKMTY:	
	Time Left 89 sec(s)
Quiz Start Time: 04:40 PM	
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM)	Total Marks: 1
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map Select correct option:	Total Marks: 1 gnitude is equal to
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest mag Select correct option:	Total Marks: 1 gnitude is equal to
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest mag Select correct option:	Total Marks: 1 gnitude is equal to
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map ► Select correct option: C unity C zero	Total Marks: 1 gnitude is equal to
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map ► Select correct option: C unity C zero C zero C unity C zero C L L L L L L L L L L L L L L L L L L L	Total Marks: 1 gnitude is equal to
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map ▶ Select correct option:	Total Marks: 1 gnitude is equal to Click here to <u>S</u> ave Answ er & Move to Next Question
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map Select correct option: Unity Zero Zero KMEPDw UKMTY: WEVBgLdv/PBE	Total Marks: 1 gnitude is equal to Click here to <u>S</u> ave Answ er & Move to Next Question
Quiz Start Time: 04:40 PM Question # 6 of 10 (Start time: 04:43:20 PM) An eigenvector V is said to be normalized if the coordinate of largest map ▶ Select correct option:	Total Marks: 1 gnitude is equal to Click here to Save Answ er & Move to Next Question Time Left $\frac{55}{sec(s)}$

Page No.106

Total Marks: 1

Question # 7 of 10 (Start time: 04:43:39 \mbox{PM})

€.

€ I

€.

/w EPDw UKMTY2 /w EWCgKw hsW

scalar

low er triangular

 \odot

 \odot

The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A.

🕨 Sel	ect correct option:	
0	TRUE	
\circ	FALSE	
	▼	
		Click here to Save Answer & Move to Next Question
/w EPD	- WUKMTY:	
/w EW	CgLOz NjNE	
1		Time Left 90 🕟
Quiz S	tart Time: 04:40 PM	
Questi	on # 8 of 10 (Start time: 04:45:08 PM)	Total Marks: 1
The de	terminant of a matrix is the product of the diagonal eler	nents.
🕨 Sel	ect correct option:	
0	diagonal	
	▼ 4	
0	upper triangular	

Click here to Save Answer & Move to Next Question

Time Left 89 🕟

sec(s)

Quiz S	itart Time: 04:40 PM		
Quest	ion # 9 of 10 (Start time: 04:46:35 PM)		Total Marks: 1
Eigenv	values of a symmetric matrix are all	•	
🕨 Sel	ect correct option:		
0	real		
	4	v	
0	zero	<u> </u>	
	4	v	
0	positive		
	4	V	
0	negative	A	
	4	V	
			Click here to Save Answer & Move to Next Question
/w EP[Dw UKMTY:		
/w EW	BgLX34ivA		
			Time Left 89 sec(s)

Quiz Start Time: 04:40 PM

Question # 10 of 10 (Start time: 04:47:33 PM)

The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A.

Select correct option:

0	TRUE	
	4	×
0	FALSE	-
	I	▼ ►

Click here to Save Answer & Move to Next Question

Set-05

/w EPDw UKMTY:

/w EWBgKqiMqh(

Time Left $\frac{89}{\text{sec(s)}}$

Quiz Start Time: 04:50 PM

Question # 1 of 10 (Start time: 04:50:37 PM)

Total Marks: 1

The Jacobi's method is a method of solving a matrix equation on a matrix that has no zeros along its main diagonal.

Select correct option:

0	TRUE	
	▼	
\circ	FALSE	
	▼ ↓ ↓	
		Click here to Save Answer & Move to Next Question
/w EPD	W UKMTY:	
		Time Left 90 (sec(s)
Quiz S	tart Time: 04:50 PM	
Questi	on # 2 of 10 (Start time: 04:50:51 PM)	Total Marks: 1
The ch identit	aracteristics polynomial of a 3x 3 identity matrix isy matrix. where symbol ^ shows power.	_, if x is the eigen values of the given 3×3
🕨 Sel	ect correct option:	
0	(x-1)^3	

Page No.109

Quiz Start Time: 04:50 PM

Question # 4 of 10 (Start time: 04:51:57 PM)

If n x n matrices A and B are similar,	then they have the different eigenvalue	es (with the same multiplicities).

Select correct option:

C	TRUE	Þ	*			
C	FALSE	Þ	* *			
				Click here to <u>S</u> ave Answ er	& Move to Ne	ext Question
/w EPD	Dw UKMTY:					
/w EW	BgLC663Y					
					Time Left	89 sec(s) 🕟

Quiz Start Time: 04:50 PM

If x is an eigen value corresponding to eigen value of V of a matrix A. If a is any constant, then x - a is an eigen value corresponding to eigen vector V is an of the matrix A - a I.

Select correct option:

Time Left $\frac{88}{sec(s)}$

Total Marks: 1

Total Marks: 1

/w EPDw UKMTY:

/w EWBgL71Ojw

Time Left $\frac{88}{\text{sec(s)}}$

Quiz Start Time: 04:50 PM

Question # 6 of 10 (Start time: 04:53:38 PM)

Total Marks: 1

Central difference method seems to be giving a better approximation, however it requires more computations.

Select correct option:

0	TRUE	A	
	4		
0	FALSE	A	
	4	×	
		•	Click here to Save Answ er & Move to Next Question
/w EPD	Dw UKMTY:		
/w EW	BgLTr6Ggl		

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

MTH603-Numerical Analysis_ Muhammad Ishfaq

Quiz Start Time: 04:50 PM

Question # 7 of 10 (Start time: 04:54:56 PM)

The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A.

Select correct option:

0	TRUE	
0	FALSE	
		Click here to Save Answer & Move to Next Question
/w EPC	w UKMTY:	
/w EW	3gKr97efA	
		Time Left 89 sec(s)
Quiz S	tart Time: 04:50 PM	
Questi	on # 8 of 10 (Start time: 04:55:31 PM)	Total Marks: 1
Iterativ	re algorithms can be more rapid than direct methods.	
🕨 Sele	ect correct option:	

Page No.112

Total Marks: 1

Question # 9 of 10 (Start time: 04:55:49 PM)

Central Difference method is the finite difference method.

Select correct option:

0	TRUE	A	
	4		
0	FALSE	<u> </u>	
	4		
			Click here to <u>Save Answer & Move to Next Question</u>
/w EPC	DW UKMTY2		
/w EW	BgLonf2RE		

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

MTH603-Numerical Analysis_ Muhammad Ishfaq

Quiz Start Time: 04:50 PM

Question # 10 of 10 (Start time: 04:56:20 PM)

A 3 x 3 identity matrix have three and different eigen values.

Select correct option:

€l

Click here to Save Answ er & Move to Next Question

Page No.114

Total Marks: 1

Page No.116

An indefinite integral may	_ in the sense that the limit defining it may not exist.	
Select correct option:		
C diverge	<u> </u>	
4		
C converge	<u>_</u>	
4	ب	
	•	Click here to Save Answer & Move to Next Question
/wEPDwUKMTY2I		
/wEWCgKMu86b		
Time Left $\begin{array}{c} 85\\ sec(s) \end{array}$		

Question # 5 of 8 (Start time: 01:30:21 PM)

Total Marks: 1

The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used to model the curve in trapezoidal Rule.

▶ Sel	ect correct option:	
0	straight lines	<u>_</u>
	4	• •
0	curves	A
	4	Þ
0	parabolas	A
	4	¥ }

Dago	No	117
Page	INU	

Constant	
	Click here to Save Answer & Move to Next Question
/wEPDwUKMTY2I /wEWBgK6oIaxB	
Time Left $\begin{array}{c} 83\\ sec(s) \end{array}$	
Question # 6 of 8 (Start time: 01:31:18 PM) An improper integral is the limit of a definite integral as an endpoint of the interval of int or -8 or, in some cases, as both endpoints approach limits.	Total Marks: 1 egration approaches either a specified real number or 8
Select correct option:	
TRUE	
FALSE	
	Click here to Save Answer & Move to Next Question
/wEPDwUKMTY2I /wEWBgKPg8yyE	
Time Left $\begin{array}{c} 84\\ sec(s) \end{array}$	
Question # 7 of 8 (Start time: 01:32:33 PM)	Total Marks: 1
Euler's Method numerically computes the approximate derivative of a function.	

Select correct option:

0	FALSE	• •		
c	TRUE	• •		
6EDD			•	Click here to <u>Save Answer & Move to Next Question</u>
/wEPL	CgKK6eLRI			
Questio	Fime Left 84 sec(s) $1:33:57$	' PM)		Total Marks: 1

Question # 8 of 8 (Start time: 01:33:57 PM)

If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to _

Select correct option: ►

0	constant	* *
0	finite	4 V 1
0	infinity	A.
0	zero	

Click here to Save Answer & Move to Next Question

Set-07

Question # 1 of 10 (Start time: 10:22:24 AM) Total Marks: 1

Eigenvalues of a symmetric matrix are all ______ Select correct option:

> real zero positive negative

Question # 2 of 10 (Start time: 10:23:07 AM) Total Marks: 1

An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to zero. Select correct option:

TRUE FALSE

Question # 3 of 10 (Start time: 10:23:55 AM) Total Marks: 1

Exact solution of 2/3 is not exists. Select correct option:

TRUE FALSE

Question # 4 of 10 (Start time: 10:24:53 AM) Total Marks: 1

The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric ______ definite matrices A. Select correct option:

positive negative

Question # 5 of 10 (Start time: 10:26:04 AM) Total Marks: 1

Differences methods find the _____ solution of the system.

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Select correct option:

numerical Analytical

Question # 6 of 10 (Start time: 10:26:49 AM) Total Marks: 1

The characteristics polynomial of a 3x 3 identity matrix is ______, if x is the eigen values of the given 3 x 3 identity matrix. where symbol ^ shows power. Select correct option:

(x-1)^3 <u>(x+1)^3</u>	i m not sure about this answer
x^3-1	
x^3+1	

Question # 7 of 10 (Start time: 10:28:08 AM) Total Marks: 1

The Power method can be used only to find the eigen value of A that is largest in absolute value—-----we call this eigen value the dominant eigen value of A. Select correct option:

TRUE FALSE

Question # 8 of 10 (Start time: 10:29:33 AM) Total Marks: 1

The Jacobi's method is a method of solving a matrix equation on a matrix that has no zeros along its ______. Select correct option:

main diagonal last column last row <u>first row</u> i m not sure about this answer

Question # 9 of 10 (Start time: 10:30:33 AM) Total Marks: 1

If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix, the eigenvalues of A are the diagonal entries of A. Select correct option:

TRUE FALSE **Total Marks: 1**

Question # 10 of 10 (Start time: 10:31:28 AM)

A 3 x 3 identity matrix have three and different eigen values. Select correct option:

TRUE FALSE

Set-08
Differences methods find the solution of the system.
Select correct option:
© numerical
© Analytical
The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A.
Select correct option:
○ TRUE
© FALSE
If n x n matrices A and B are similar, then they have the different eigenvalues (with the same multiplicities).
Select correct option:
° TRUE
© FALSE
Select correct option:
© symmetric
C antisymmetric
• rectangular
© triangular
By using determinants, we can easily check that the solution of the given system of linear equation exits and it is unique.
Select correct option:

0	TRUE		
0	FALSE		
The dor value) c	ninant eigenvector of a matrix is an eigenvector corresponding to the eigenvalue of largest magnitude (for real numbers, smallest absolute of that matrix.		
🕨 Sele	ct correct option:		
0	TRUE		
0	FALSE		
Eigenva	lues of a symmetric matrix are all		
🕨 Sele	ct correct option:		
0	real		
\circ	complex		
0	zero		
0	positive		
Below a	are all the finite difference methods EXCEPT		
Select correct option:			
0	jacobi's method		
0	newton's backward difference method		
0	Stirlling formula		
0	Forward difference method		

Quiz#10

The central difference method is finite method.

Select correct option:

True

False			
Power method is applicable if the eigen vectors corresponding to eigen values are linearly			
Select correct option:			
•			
© independent			
C dependent			
Central difference method seems to be giving a better approximation, however it requires more computations.			
Select correct option:			

FALSE The Jacobi iteration	0	TRUE		
The Jacobi iterationif A is strictly diagonally dominant. Select correct option: Converges Conver	0	FALSE		
Select correct option: c converges Power method is applicable if the eigen values are Select correct option: c real and distinct c real and distinct c negative and distinct c FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option:	The Jac	cobi iteration, if A is strictly diagonally dominant.		
C converges O diverges Power method is applicable if the eigen values are	🕨 Sele	ect correct option:		
o diverges Power method is applicable if the eigen values are	0	converges		
Power method is applicable if the eigen values are Select correct option: real and distinct positive and distinct negative and distinct negative and distinct determinant of a diagonal matrix is the product of the diagonal elements. Select correct option: FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE The Causs-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE TRUE Select correct option: TRUE Select correct option: Select correct option: 	0	diverges		
Select correct option: real and distinct positive and distinct positive and distinct positive and distinct determinant of a diagonal matrix is the product of the diagonal elements. Select correct option: TRUE FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE TRUE Select correct option: different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to	Power	method is applicable if the eigen values are		
c real and distinct c real and equal c positive and distinct c negative and distinct c negative and distinct c real and equal c real and equal c regative and distinct c regative and distinct c real and equal c real and agonal matrix is the product of the diagonal elements. c real and equal c real and equal c real and agonal matrix is the product of the diagonal elements. c real and equal c real and bisinct c <t< td=""><td>🕨 Sele</td><td>ect correct option:</td></t<>	🕨 Sele	ect correct option:		
real and equal positive and distinct eterminant of a diagonal matrix is the product of the diagonal elements. Select correct option: TRUE FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE TRUE FALSE Select correct option: in trave matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: in a n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: in a n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: in a n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: in a n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: in a n matrices A and B are similar, then they have the	0	real and distinct		
 positive and distinct negative and distinct determinant of a diagonal matrix is the product of the diagonal elements. Select correct option: TRUE FALSE TRUE Select correct option: TRUE FALSE TRUE FALSE TRUE Select correct option: and a similar, then they have the eigenvalues (with the same multiplicities). Select correct option: different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: anne different 	0	real and equal		
 negative and distinct determinant of a diagonal matrix is the product of the diagonal elements. Select correct option: FALSE FALSE Select correct option: FALSE TRUE FALSE TRUE FALSE TRUE Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero 	0	positive and distinct		
determinant of a diagonal matrix is the product of the diagonal elements. Select correct option: FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	0	negative and distinct		
Select correct option: FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	determi	inant of a diagonal matrix is the product of the diagonal elements.		
 TRUE FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: anne different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero 	Sele	ect correct option:		
FALSE The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	0	TRUE		
The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A. Select correct option: FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: ame different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	0	FALSE		
Select correct option: TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	The Ga	uss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A.		
 TRUE FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: anne different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero 	🕨 Sele	ect correct option:		
 FALSE If n x n matrices A and B are similar, then they have the eigenvalues (with the same multiplicities). Select correct option: same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: select correct option: gero 	0	TRUE		
If n x n matrices A and B are similar, then they have theeigenvalues (with the same multiplicities). Select correct option: o same o different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: o unity o zero	0	FALSE		
Select correct option: same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero	If n x n	matrices A and B are similar, then they have the eigenvalues (with the same multiplicities).		
 same different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero 	Select correct option:			
 different An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity zero 	0	same		
An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to Select correct option: unity c zero	0	different		
 Select correct option: unity zero 	An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to			
 unity zero 	🕨 Sele	ect correct option:		
○ zero	0	unity		
	0	zero		

Set-09

Exact solution of 2/3 is not exists.

TRUE

FALSE

The Jacobi's method is

a method of solving a matrix equation on a matrix that has _____ zeros along its main diagonal.

no

atleast one

A 3 x 3 identity matrix have three and ______eigen values.

same

different

Figenvalues	of a	symmetric matrix are all	
	••••		•
•			-

real

complex

zero

positive

The Jacobi iteration converges, if A is strictly diagonally dominant.

TRUE

FALSE

Below are all the finite difference methods EXCEPT ______.

jacobi's method

newton's backward difference method

Stirlling formula

Forward difference method

If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities).

TRUE

FALSE

If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix, the eigenvalues of A are the diagonal entries of A.

TRUE

FALSE

The characteristics polynomial of a 3x 3

identity matrix is ______, if x is the eigen values of the given 3 x 3 identity matrix. where symbol ^ shows power.

(x-1)^3

(x+1)^3

x^3-1

x^3+1

Two matrices with the same characteristic polynomial need not be similar.

Total Marks: 1

TRUE

FALSE

Set-10	
/wEPDwUKMTY2I	
/wEWBgLDz9rUC	
MC090400760 : Imran Shahzad	Time Left 67
	sec(s)
Quiz Start Time: 05:13 PM	

Question # 1 of 10 (Start time: 05:13:27 PM)

The determinant of a _____ matrix is the product of the diagonal elements.

Select correct option:

- O diagonal
- O upper triangular
- O lower triangular
- O scalar

Click here to Save Answer & Move to Next Question

/wEPDwUKMTY2I

/wEWBALIstSEAv

Page No.127

MC090400760 : Imran Shahzad		Time Left 44 sec(s)			
Quiz Start Time: 05:13 PM					
Question # 2 of 10 (Start time: 05:14:53 PM)		Total Marks: 1			
The absolute value of a determinant (detA) is the product of the absolute values of the eig	genvalues of matrix A				
Select correct option:					
○ TRUE					
© FALSE					
	Click here to <u>Save</u> Answer	& Move to Next Question			
/wEPDwUKMTY2I					
/wEWBAL85ba6E					
MC090400760 : Imran Shahzad		Time Left 78 sec(s)			
Quiz Start Time: 05:13 PM					
Question # 3 of 10 (Start time: 05:16:13 PM)		Total Marks: 1			
Central difference method seems to be giving a better approximation, however it requires	more computations.				
Select correct option:					
O TRUE					
© FALSE					

Click here to Save Answer & Move to Next Question

/wEPDwUKMTY2I

/wEWBALvyM2JC

MC090400760 : Imran Shahzad

Quiz Start Time: 05:13 PM

Question # 4 of 10 (Start time: 05:17:36 PM)

The Power method can be used only to find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the dominant eigenvalue of A.

Select correct option:

۲ TRUE

Ô FALSE

/wEPDwUKMTY2I

/wEWBgLv7oHdE

MC090400760 : Imran Shahzad

Quiz Start Time: 05:13 PM

Question # 5 of 10 (Start time: 05:18:12 PM)

Let A be an n ×n matrix. The number x is an eigenvalue of A if there exists a non-zero vector v such that

Select correct option:

 \sim Av = xv

O Ax = xv

Click here to Save Answer & Move to Next Question

66 Time Left sec(s)

Total Marks: 1

Time Left sec(s)

Total Marks: 1

67

Page No.128

 \odot Av + xv = 0

O Av = Ax

Click here to Save Answer & Move to Next Question

/wEPDwUKMTY2I

/wEWBAKOofDw

MC090400760 : Imran Shahzad

Quiz Start Time: 05:13 PM

Question # 6 of 10 (Start time: 05:19:22 PM)

The Jacobi's method is a method of solving a matrix equation on a matrix that has no zeros along its main diagonal.

Select correct option:

O TRUE

 \odot

/wEPDwUKMTY2I

/wEWBAKyoPefC

MC090400760 : Imran Shahzad

Quiz Start Time: 05:13 PM

Question # 8 of 10 (Start time: 05:21:26 PM)

The Jacobi iteration converges, if A is strictly diagonally dominant.

Select correct option:

Total Marks: 1

Total Marks: 1

40

sec(s)

Time Left

C TRUE

C FALSE

Click here to Save Answer & Move to Next Question

Click here to Save Answer & Move to Next Question

/wEPDwUKMTY2I

/wEWBgK0iY31C

MC090400760 : Imran Shahzad

Quiz Start Time: 05:13 PM

/wEPDwUKMTY2I

/wEWBAKG4seDl

MC090400760 : Imran Shahzad

Time Left 47 sec(s)

Quiz Start Time: 05:13 PM

Question # 9 of 10 (Start time: 05:22:47 PM)

Total Marks: 1

Central Difference method is the finite difference method.

Select correct option:

C TRUE

C FALSE

Click here to Save Answer & Move to Next Question

Total Marks: 1

Page No.131

/wEWBAKw0/X2E

MC0	9040076	50 : Imran Shahzad	Time Left 34 sec(s)						
Quiz S	Start Time:	05:13 PM							
Questi	on # 10 of	10 (Start time: 05:23:47	PM) Total M	larks: 1					
By usi given s	ng determ system of l	inants, we can easily che inear equation exits and it i	ck that the solution s unique.	n of the					
	Select cor	rect option:							
0	TRUE								
0	FALSE								
		Click here to <u>S</u> ave Answer	& Move to Next Qu	uestion					
(Start	time: 05:	20:47 PM)							
The cha ^ shows	aracteristic s power.	s polynomial of a 3x 3 ider	ntity matrix is	, if	x is the eigen	values of the give	en 3 x 3 identity	matrix. where s	symbol
S	Select corr	rect option:							
0	(x-1)^3								
0	(x+1)^3								
0	x^3-1								
0	x^3+1								

Click here to Save Answer & Move to Next Question

Set-11

Contents:

- 1. mth603 compiled mcq.doc
- 2. MTH603 Final.doc
- 3. NAPaperFinalTerm.doc
- 4. NAPaperFinalTermmth603.doc
- 5. Spring 2010 FinalTerm OPKST MTH603 mc080408680.doc

Contents:

- 1. mid -2006.doc
- 2. mid-2006a.doc
- 3. mth603 quiz.doc
- 4. mth603.doc
- 5. MTH603 MID FALL2005.doc
- 6. my MTH603 quiz.doc
- 7. my.mth603.doc
- 8. quizz mth603(2).doc
- 9. quizz mth603.doc

/w EPDw UKMTY2

/w EWBgKPm46n

Question # 1 of 10 (Start time: 04:40:08 PM)

Total Marks: 1

Total Marks: 1

The determinant of a diagonal matrix is the product of the diagonal elements.

- 1. True
- 2. False

Question # 2 of 10 (Start time: 04:40:58 PM)

Power method is applicable if the eigen vectors corresponding to eigen values are linearly independent.

- 1. True
- 2. false

A 3 x 3 identity matrix have three and different eigen values.

- 1. True
- 2. False

If n x n matrices A and B are similar, then they have the different eigenvalues (with the same multiplicities).

1. True

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

2. False

The Jacobi's method is a method of solving a matrix equation on a matrix that has _____ zeros along its main diagonal.

1. No

2. At least one

An eigenvector V is said to be normalized if the coordinate of largest magnitude is equal to ____

 1. Unity

 2. zero

/w EPDw UKMTY2

The Gauss-Seidel method is applicable to strictly diagonally dominant or symmetric positive definite matrices A.

1. True

2. False

/w EWBgKin4Ocf

/w EPDw UKMTY2

The determinant of a ______ matrix is the product of the diagonal elements.

- 1. Diagonal
- 2. Upper triangular
- 3. Lower triangular
- 4. Scalar

Waisay main nay is ka answer Diagnol keea tha....par yeh charon options theek hain.... You can confirm it from internet...

Jab main yeh MCQ kar raha tha tou tab hi mujhay is par shak ho raha tha....kyun k upper aur lower triangular matrices tou linear algebra mein bhi bahut ziada bataye gaye tou yeh property wahan se hi yaad thi...

Eigenvalues of a symmetric matrix are all ____

<mark>1.</mark>	Real	
2.	Zero	
3.	Positive	
4.	Negative	/w EPDw UKMTY2

/w EWBgKR8tba/

The Power method can be used only to find the eigen value of A that is largest in absolute value—we call this eigen value the dominant eigen value of A.

1.	True
2.	False
/w EP	Ow UKMTY
/w EV	/BaKivL19

Page No.134

The cha	aracteri	istics polynomial of a 3x 3 identity matrix is, if x is the eigen values of the given 3 x 3
identity	/ matrix	x. where symbol ^ shows power.
1.	(x-1)^3	
2.	(x+1)^3	
3. 4.	x^3-1 x^3+1	
	For dif	fferences methods we require the set of values.
	<mark>1.</mark>	True
	2.	False

If n x n matrices A and B are similar, then they have the different eigenvalues (with the same multiplicities).

1.	True			
2.	False			

If x is an eigen value corresponding to eigen value of V of a matrix A. If a is any constant, then x - a is an eigen value corresponding to eigen vector V is an of the matrix A - a I.

1.	True				
2.	False				

a ko agar aap lambda se replace kar dain tou baat clear ho jaye gi....labda ki jagah a use keea gaya hai tou is liay yeh working thora sa confuse karti hai...

Central difference method seems to be giving a better approximation, however it requires more computations.

1. True

2. False

Iterative algorithms can be more rapid than direct methods.

1. True (main nay true hi keea tha, aap isay dekh lena)

2. False

Central Difference method is the finite difference method.

1. True

2. False

Page No.135

/w EPDw UKMTY2

MTH603 Numerical Analysis

Mid Term Examination - Spring 2006 Time Allowed: 90 Minutes

Question No. 1

ks : 10

Mar

Mar

Use bisection method to find the solution for (Perform only three iterations.)

Question No. 2

 $2 + \cos(\frac{x}{e} - 2) - \frac{x}{e} = 0$

on interval [0.5, 1.5]

Marks : 2

Bisection and false position methods are also known as bracketing method and are always

- **G** Divergent
- **6** Convergent

Question No. 3

ks : 10

Use Gauss Elimination method to solve the following system.

 $4x_{1} - x_{2} + x_{3} = 8$

Page No.136

Mar

Mar

Mar

Mar

 $2x_{1} + 5x_{2} + 2x_{3} = 3$ $x_{1} + 2x_{2} + 4x_{3} = 11$

Question No. 4

ks : 2

The Inverse of a matrix can only be found if the matrix is

- **G** Singular
- Non singular
- **G** Scalar
- **9** Diagonal

Question No. 5

ks : 2

If f(x) contains trigonometric, exponential or logarithmic functions then this equation is known as

- **9** Transcendental equation
- **6** Algebraic
- **9** Polynomial
- **G** Linear

Question No. 6

ks : 2

In interpolation is used to represent the δ

- **6** Forward difference
- **G** Central difference
- **G** Backward difference

Question No. 7

ks : 2

The base of the decimal system is _____

- 10
 0
 2
 8
- None of the above.

Question No. 8

Use Newton's Raphson Method to find the solution for (Perform only three iterations.)

Question No. 9

Marks: 10

 $x^{3} + 3x^{2} - 1 = 0$ on [-3,-2].

Marks: 10

Approximate f(0.05) by using any of the interpolation technique.

Х	0.0	0.2	0.4	0.6	0.8
F(x)	1.000	1.22140	1.49182	1.82212	2.22554

$$[(f_0+f_n)+2\sum_{i=1}^{n-1}f_i]$$

is known as

Simpson's 1/3 rd Rule

Simpson's 3/8 rule

Trapezoidal rule

Page No.138

Question No: 2 (Marks: 2) - Please choose one

Question No: 3 (Marks: 2) - Please choose one

Which method is not used to solve problems related to integration?

Runge-Kutta Method

► Simpson's 1/3rd rule

Question No: 7 (Marks: 10)

Interpolate the value of 0.25 using Newton's forward difference formula.

Х	0.2	0.3	0.4	0.5	0.6
F(x)	0.2304	0.2788	0.3222	0.3617	0.3979

(Perform all the necessary calculation missing calculation and steps may deduct marks.)

Exact solution of 2/3 is not exists. TRUE FALSE

The Jacobi's method is a method of solving a matrix equation on a matrix that has _____ zeros along its main diagonal.

no atleast one

A 3 x 3 identity matrix have three and _____eigen values.

same different

Eigenvalues of a symmetric matrix are all ______. real

complex

zero

positive

The Jacobi iteration converges, if A is strictly diagonally dominant. TRUE FALSE

Below are all the finite difference methods EXCEPT _____.

jacobi's method newton's backward difference method Stirlling formula Forward difference method

If n x n matrices A and B are similar, then they have the same eigenvalues (with the same multiplicities). TRUE FALSE

If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix , the eigenvalues of A are the diagonal entries of A.

TRUE

FALSE

The characteristics polynomial of a 3x 3 identity matrix is ______, if x is the eigen values of the given 3 x 3 identity matrix. where symbol ^ shows power.

(x-1)^3 (x+1)^3 x^3-1 x^3+1

Two matrices with the same characteristic polynomial need not be similar.

TRUE FALSE

Тор

603 5 have today..... method i attempt mth my paper was power marks from vactor 3 marks. Newton_Repshon's forwrd distnce formula marks., define 2 marks MCQ's 5 extra polation and most of from .. Newton_Repshon's method, or 18 to 22 lec's

question 29: Distinguish between Related and unrelated diversification with example 5marks question 30 Five porters Model 5 marks question 31: conecntric diversification two example 3marks question 32 significant of R&D for an organization 3marks

Which of the following period strategic management was considered to be cure for all problems?
Mid 1950s to mid 1960s
Mid 1960s to mid 1970s
Mid 1970s to mid 1980s
Mid 1980s to mid 1990s

Which of the following is not a pitfall an organization should avoid in strategic planning?
Select correct option:
Failing to involve key employees in all phases of planning
Involving all managers rather than delegating planning to a planner
Top managers not actively supporting the strategic planning process
Doing strategic planning only to satisfy accreditation or regulatory requirements

which of the following are the factors that concern the nature and direction of the economy in which a firm operates? Select correct option: Technological Ecological Social Economic

Which of the following best describes this statement; "a Systematic and ethical process for gathering and analyzing information about the competition's activities and general business trends to further a business' own goals"? Select correct option: External assessment Industry analysis **Competitive intelligence program** Business ethics

According to Porter, which strategy offers products or services to a small range of customers at the lowest price available on the market? Select correct option: Low cost Best value **Cost focus** Differentiation

Long-term objectives includes all of the following EXCEPT:

Measurable

Reasonable

Varying

Consistent

Which one of the following is <u>NOT</u> is a basic mission of a competitive intelligence program?

To provide a general understanding of an industry

To provide a general understanding of a company's competitors

To identify industry executives who could be hired by the firm

To identify potential moves a competitor might make that would endanger a firm

While preparing an External Factor Evaluation Matrix, a total score of 0.8 indicates that:

Firm is taking advantages of strengths and avoiding threats

Firm is taking no advantage of opportunities and is avoiding threats

Firm is not taking advantages of opportunities and is not avoiding threats

Firm is taking advantage of opportunities and is avoiding the threats

Тор

Page No.142

Use the Regula-Falsi method to compute a real root of the equation

$x^3 - 9x + 1 = 0$, (Perform two iterations for each part)

```
(i) if the root lies between 2 and 4
```

(ii) if the root lies between 2 and 3.

Solve the following system of equations by Crout's method

 $\begin{aligned} x_1 + 2x_2 + x_3 &= 2\\ 2x_1 + x_2 - 10x_3 &= 0.182\\ 2x_1 + 3x_2 - x_3 &= 2 \end{aligned}$ Find the numerical solution of $55x - 25z &= -200\\ -37y - 4z &= -250\\ -25x - 4y + 29z &= 100 \end{aligned}$

Using Gauss-Siedel Mehtod with^{(1,1,1)|} as the

as the initial value. Perform two iterations only.

Solve $x^3 - 9x + 1 = 0$ for the root between x = 2 and x = 4 by the bisection method. (Perform four iterations only)

Тор

Page No.143

0	two
0	single
	v
0	at most
	Click hore to Sava Apayor & Mayo to Novt Overtion
	Click here to save Answer & move to Next Question
Que 08:	00 # 3 01 8 (Start time: Total Marks: 1
In 7	Dezoidal rule, the integral is computed on each of the sub-
inte	Is by using linear interpolating formula, i.e. for $n = 1$ and
ther	imming them up to obtain the desired integral.
	ect correct option:
0	
~	
0	
	Click here to Save Answer & Move to Next Outstion
	Click here to Save Answer & Move to Next Question
	Click here to Save Answer & Move to Next Question
Quest	Click here to Save Answer & Move to Next Question # 4 of 8 (Start time: 08:36:52 PM)
Quest Euler's	Click here to Save Answer & Move to Next Question # 4 of 8 (Start time: 08:36:52 PM) tethod numerically computes the approximate of a function.
Quest Euler's Se	Click here to Save Answer & Move to Next Question # 4 of 8 (Start time: 08:36:52 PM) tethod numerically computes the approximate of a function. t correct option:
Page No.144

0	antiderivative	
	▼	
-		
0	derivative	
0	value	
0	error	
	v	
	Click here to Save Answer & Move to Next Question	
	ĩ	otal Marks: 1
Quest	n # 5 of 8 (Start time: 08:37:25 PM)	
Multis	p method does not improves the accuracy of the answer at each step.	
Se	ct correct option:	
0	FALSE	
	v I	
0	TRUE	
0	TRUE Click here to Save Answer & Move to Next Question	Fotal Marks: 1
c	TRUE Click here to Save Answer & Move to Next Question	Fotal Marks: 1
Quest	TRUE Click here to Save Answer & Move to Next Question T n # 6 of 8 (Start time: 08:37:56 PM)	fotal Marks: 1
C Quest The tra	TRUE TRUE Click here to Save Answer & Move to Next Question n # 6 of 8 (Start time: 08:37:56 PM) ezoidal rule is a numerical method that approximates the value of a	Fotal Marks: 1
C Quest The tra Se	TRUE TRUE Click here to Save Answer & Move to Next Question n # 6 of 8 (Start time: 08:37:56 PM) ezoidal rule is a numerical method that approximates the value of a ct correct option:	Fotal Marks: 1

0	indefinit	e integral	
0	definite	integral	
	•	v. F	
0	imprope	er integral	
0	function		
<u> </u>		Click here to Save Answer & Move to Next Question	
			Total Marks: 1
Quest Simps	ion # 7 of 8 on's rule is	3 (Start time: 08:38:47 PM) a numerical method that approximates the value of a definite integral by using polynomia	ls.
► Se	elect correc	t option:	
\circ	quadrat	ic	
	•		
$^{\circ}$	linear		
0	cubic		
0	quartic		
		Click here to Save Answer & Move to Next Question	Total Marks: 1

Question # 3 of 8 (Start time: 09:46:11 PM)

Total Marks: 1

The first langrange polynomial with equally spaced nodes produced the formula for _____

Select correct option:

0	Simpson's rule	<u> </u>		
	4	¥ •		
0	Trapezoidal rule	<u> </u>		
	4	×		
0	New ton's method	<u> </u>		
		×		
0	Richardson's method	<u> </u>		
	4	• •		
				Click here to Save Answ er & Move to Next Question
		/w EPDw UKMTY2	/w EWBgLgsd	НјВ
MC	90406505 : Sumera Naz	$\begin{array}{ccc} \text{Time} & 12 \\ \text{Left} & \sec(s \bigcirc \\) \end{array}$		

Quiz Start Time: 09:44 PM

Page No.147

Question # 4 of 8 (Start time: 09:46:48 PM)

Total Marks: 1

The need of numerical integration arises for evaluating the indefinite integral of a function that has no explicit antiderivative or whose antiderivative is not easy to obtain.

0	TRUE		<u>_</u>		
			-		
			E −		
0	FALSE		-		
			Þ		
				▶ .	Click here to Save Answer & Move to Next Question
		/w E	PDw UKMTY2	/w EWCgKl9p\	NZI
MC0	90/106505 · Sumera Naz	J	70		
WICO	J0400305 . Sumera Maz	Time	73		
		Left	sec(s 🕓		
)		

Quiz Start Time: 09:44 PM

Select correct option:

Question # 5 of 8 (Start time: 09:48:13 PM)

Total Marks: 1

The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used ______ to model the curve in trapezoidal Rule.

0	straight lines	<u>^</u>	
	4	V F	
0	curves	<u> </u>	
	4	v b	
0	parabolas	<u> </u>	
	4	▼.	
0	constant	<u> </u>	
	4	▼.	
		•	Click here to Save Answ er & Move to Next Question
		/w EPDw UKMTY 2 /w EWCgLo	7tKA.

Select correct option:

MC	990406505 : Sumera Naz	Time Left	69 sec(s ()					
Quiz	Start Time: 09:44 PM							
Ques	tion # 6 of 8 (Start time: 09:	48:35 PN	1)				Total Mark	s: 1
The l	Euler method is numerically	unstable	because of		conver	gence of erro	or.	
🕨 Se	elect correct option:							
0	slow		*					
	4		▼ ►					
0	fast		*					
			-					
0	moderate		*					
			-					
0	no		<u> </u>					
	4		•					
					Click	here to Save An	swer&MovetoNextQuest	ion
		/\A			/il72B4			
MC	190406505 · Sumera Naz	,		/WEWDgEy	,)17 2 07			
Mee		Time Left	$\frac{74}{\sec(s \ \bigcirc)}$					
Quiz	Start Time: 09:44 PM							
Ques	tion # 8 of 8 (Start time: 09:	49:41 PN	(1)				Total Mark	s: 1
Adar	ns – Bashforth is a multistep	method.						
► Se	elect correct option:							
0	TRUE							
	4		►					
0	FALSE		A					
	4		•					

Click here to Save Answ er & Move to Next Question

Тор			
/wEPI	DwUKMTY2N /wEWBgK+3MgIA		
Ouesti	on # 1 of 8 (Start time: 01:24:49 PM)		Total Marks: 1
The ne	ed of numerical integration arises for ev	valuating the definite integral of a function that has no explicit	or whose
antider	ivative is not easy to obtain.	and any the domine integral of a function that has no explicit	
Sel	ect correct option:		
\odot	antiderivative		
		-	
0	derivatives	<u>_</u>	
	4	F	
		/wEPDwUKMTY21 /wEWBqLy4ZCpA	
Questi	on # 2 of 8 (Start time: 01:26:18 PM)		Total Marks: 1
In Run	ge – Kutta Method, we do not need to calcu	late higher order derivatives and find greater accuracy.	
🕨 Sel	ect correct option:		
0	TRUE		
		-	
	4	Þ	
-			
\odot	FALSE	<u> </u>	
		•	
	4		
		/wei bwoki i zi /wewbgewosce	
Questi	on # 3 of 8 (Start time: 01:27:35 PM)		Total Marks: 1
An ind	efinite integral may in the sense	that the limit defining it may not exist.	
Sel	ect correct option:		
~ **	x		

Question # 5 of

The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used _ to model the curve in trapezoidal Rule.

(Start time: 01:30:21 PM)

Select correct option: \odot straight lines 4 \odot curves 4 C parabolas C constant 4

> /wEPDwUKMTY2N /wEWBgK6oIaxB

Question # 6 of 8 (Start time: 01:31:18 PM)

An improper integral is the limit of a definite integral as an endpoint of the interval of integration approaches either a specified real number or ∞ or $-\infty$ or, in some cases, as both endpoints approach limits.

Þ	Select	correct	option:
---	--------	---------	---------

۲	TRUE	
	<u>ا</u>	-
0	FALSE	
	<u>к</u>	

Total Marks: 1

Page No.150

Total Marks: 1

\odot diverge C converge • /wEPDwUKMTY2N /wEWCgKMu86b[

Euler's Method numerically computes the approximate derivative of a function.

Question # 8 of 8 (Start time: 01:33:57 PM)

If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to _

/wEPDwUKMTY2N

/wEWCgKK6eLRD

/wEPDwUKMTY2N

50		
0	constant	
0	finite	
۲	infinity	
0	zero	

Тор

Question # 7 of 8 (Start time: 01:32:33 PM)

/wEWBgKPg8yyD

Total Marks: 1

Total Marks: 1

Click here to Save Answer & Move to Next Question

Question # 2 of 8 (Start time: 01:26:18 PM)

Total Marks: 1

In Runge – Kutta Method, we do not need to calculate higher order derivatives and find greater accuracy.

Question # 5 of 8 (Start time: 01:30:21 PM)

Total Marks: 1

The Trapezoidal Rule is an improvement over using rectangles because we have much less "missing" from our calculations. We used ______ to model the curve in trapezoidal Rule.

Sel	ect correct option:					
0	straight lines	A				
	4	v F				
0	curves	<u> </u>				
	4	V F				
0	parabolas					
	4	×				
0	constant					
	4	×				
			•	Click here to Save Answer & M	love to Nex	t Question
		/wEPDwUKMTY2N	/wEWBgK6oIa>	×В		
					Time Left	83 sec(s)

Question # 6 of 8 (Start time: 01:31:18 PM)

Total Marks: 1

An improper integral is the limit of a definite integral as an endpoint of the interval of integration approaches either a specified real number or 8 or -8 or, in some cases, as both endpoints approach limits.

Select correct option:

If we wanted to find the value of a definite integral with an infinite limit, we can instead replace the infinite limit with a variable, and then take the limit as this variable goes to _____.

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

Тор

Тор

MTH603-Numerical Analysis SEMESTER FALL 2005

www.vupages.com

Approximate the integral $\int_{1}^{1.6} \frac{2x}{x^2 + 1} dx$ using Simpson's 1/3 rule and calculate the percentage error. (Take result up to 4 decimal places) Note: In order to get full marks do all necessary steps.

Construct a forward difference table for the following valuesx0.10.30.50.70.91.11.3y0.0030.0670.1480.2480.370.5180.697

Note : In order to get full marks do all necessary steps.

Solve the system 4x + 3y = 24 3x + 4y - z = 30-y + 4z = -24

by Gauss Seidal Method, taking $(0, 0, 0)^t$ as initial approximation(Two iterations only and take result up to 4 decimal places)

Note : In order to get full marks do all necessary steps

 $f(x) = x + \frac{2}{x}$, use cubic Lagrange interpolation based on the nodes $x_0 = 0.5$, $x_1 = 1$, $x_2 = 2$ and $x_3 = 2.5$ to approximate f(1.5) and f(1.3).

Note : In order to get full marks do all necessary stepsSolution

Approximate the Dominant Eigenvalue and corresponding Eigenvector for the matrix

 $\begin{bmatrix} 0 & 11 & -5 \\ -2 & 17 & -7 \\ -4 & 26 & -10 \end{bmatrix}$

by using Power Method. Start with $X_0 = (1,1,1)^t$. (Five iterations only and take result up to 4 decimal places)

Note : In order to get full marks do all necessary steps

Тор

NUMERICAL ANALYSIS Paper Final Term (Held: 25th Feb 2010)

No.	Questions	Questions					
1	Find value of give	ven data by Adam	Moultan's method		10		
2	Find value of give	ven data by Divide	nd Difference Con	nposite method	10		
3	Draw backward	Draw backward difference tables for given Data					
	Х						
	У						
		-					
	Х						
	У						
4	Write Simpson's	s 1/3 formula			2		
5	Find value by E	uler's Method			3		
6	Find value of K	1 by 2 nd Order R-K	method		2		
7	Convergence is used when						
8	Bisection method is method						
	Bracketin	ng Method					
	• Open						
	Random						

Share your feedback/comments at pak.nchd@gmail.com to improve file|| Back to TOP || File Version v11.02.02 published for Final Term

	• http://	none	ta nina	nom/					
0	Novrte	vustuuer	ns.mig.			mathad			1
9	INEWIG	Drooko	ting Mot	bod		memou			1
	•	Onon	ting met	liiou					
	•	Dopen	~						
	•	Kandol	11						
10	Ficen								
10	Eigen	value is							1
	•	Keal							1
	• Vector								
	•	odd							
	•	even	1/1/1	F 1 3 3	r .1 1 .	1. 1 1			
11	Find v	alue of y	$\gamma'(1)$ by	Euler's N	Aethod t	aking h=1			2
12	Find v	alue of y	$y^{2}(3)$ from	m given	table.			l	2
	X								
	У								
13	Find v	alue of y	y'(0.3) by	y Lagran	ge's Me	thod			3
	v								
	V								
14	y For Si	mngon's	1/2 mlo	noofin	tormala n	aust ha			1
14	1.01.51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/5 Tule	10.01 11		lust de			1
	•	1							
	•	5							
	•	<i>S</i>							
15	Ean Ci	8	1/2 mula	valid as	ofinton				1
15	FOI SI	mpson s	1/3 Tule	vand no	.or mer	vais ale			1
	•	1							
	•	3 E							
	•	5							
16	•	8	2/0 1	<u>c</u> .	4 1	. 1			1
16	For Si	impson's	3/8 rule	no.01 in	tervais n	nust be			1
	•	10							
	•	11							
	•	12							
	• 14								
15	http://	vustuder	its.ning.c	com/	0	1 1:00			
17	Find t	ne value	of $y'(1)$	from giv	en torwa	ard difference	table		2
	X	У	Δy	Δy^2	Δy^{3}				

Numerical analysis mth603 paper Numerical Analysis numerical paper 2009

Page No.158

The paper was very easy. The mcq's were really easy. Most of the mcq's were from the last 5 lecture. and from jacobi's method and other's. then the logical mcq's like s inverse * s = Iit was repeated twice. one 5 mark question was from newton's rapson method one 10 mark question was from lecture 11 page 69 example best of luck

Тор

NUMERICAL ANALYSIS Paper Final Term (Held: 25th Feb 2010)

No.	Questions	Mks					
1	Find value of given data by Adam Moultan's method						
2	Find value of given data by Dividend Difference Composite method						
3	Draw backward difference tables for given Data	5+5					
	X						
	У						
	X						
	у						
4	Write Simpson's 1/3 formula						
5	Find value by Euler's Method						
6	Find value of K1 by 2 nd Order R-K method						
7	Convergence is used when						
8	Bisection method is method	1					
	Bracketing Method						
	• Open						
	Random						
	• none						
	http://vustudents.ning.com/						
9	Newton Raphson method is method	1					
	Bracketing Method						
	• Open						
	• Random						
	• none						
10	Eigenvalue is						
1	• Real						

• Vector • odd 2 11 Find value of y'(1) by Euler's Method taking h=1 2 12 Find value of y'(3) from given table. 2 x x x y x x x x x y x x x x x x y <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></t<>									-
• odd • even 2 11 Find value of y'(1) by Euler's Method taking h=1 2 12 Find value of y'(3) from given table. 2 x • • y • • 13 Find value of y'(0.3) by Lagrange's Method 3 x • • y • • 14 For Simpson's 1/3 rule no.of intervals must be 1 • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • • 1 • •		• Vector							
11 Find value of y'(1) by Euler's Method taking h=1 2 12 Find value of y'(3) from given table. 2 13 Find value of y'(3) by Lagrange's Method 3 13 Find value of y'(0.3) by Lagrange's Method 3 14 For Simpson's 1/3 rule no.of intervals must be 1 14 For Simpson's 1/3 rule valid no.of intervals are 1 15 For Simpson's 3/8 rule no.of intervals are 1 16 For Simpson's 3/8 rule no.of intervals must be 1 11 12 1 1 12 I 1 1 15 For Simpson's 3/8 rule no.of intervals are 1 16 For Simpson's 3/8 rule no.of intervals must be 1 11 12 1 12 1 1 13 12 1 14 I 1 15 For Simpson's 3/8 rule no.of intervals must be 1 10 11 12 11 12 1 12 14 14 14 I 14 15		• odd							
11 Find value of y'(1) by Euler's Method taking h=1 2 12 Find value of y'(3) from given table. 2 x Image: Construction of the con		• even							
12 Find value of y'(3) from given table. 2 x y <td>11</td> <td>Find value of y</td> <td>'(1) by]</td> <td>Euler's M</td> <td>ethod t</td> <td>aking h=1</td> <td></td> <td></td> <td>2</td>	11	Find value of y	'(1) by]	Euler's M	ethod t	aking h=1			2
x x	12	Find value of y	'(3) from	n given ta	ıble.				2
13 Find value of y'(0.3) by Lagrange's Method 3 14 For Simpson's 1/3 rule no.of intervals must be 1 • 1 • 3 • 1 • 3 • 5 • 8 15 For Simpson's 1/3 rule valid no.of intervals are 1 • 1 • 3 • 1 • 3 • 5 • 8 15 For Simpson's 1/3 rule valid no.of intervals are 1 • 1 • 3 • 5 • 8 • 1 • 1 • 1 • 3 • 5 • 8 • 1 • 1 • 1 • 3 • 5 • 8 • 1 • 1 • 10 • 1 • 1 • 11 • 12 • 1 • 12 • 14 • 1 • 14 • 12 • 14 • 12 • 14 • 1 • 14 • 1 • 1 • 12 • 14 • 1 • 14 • 1 • 1 • 12 • 14 • 1 • 14 • 1 • 1 • 14		Х							
13 Find value of y'(0.3) by Lagrange's Method 3 x y y y y 14 For Simpson's 1/3 rule no.of intervals must be 1 \cdot		У							
x y	13	13 Find value of y'(0.3) by Lagrange's Method							3
14 For Simpson's 1/3 rule no.of intervals must be 1 14 For Simpson's 1/3 rule valid no.of intervals must be 1 15 For Simpson's 1/3 rule valid no.of intervals are 1 15 For Simpson's 3/8 rule no.of intervals must be 1 1 3 5 0 5 1 15 For Simpson's 3/8 rule no.of intervals are 1 16 For Simpson's 3/8 rule no.of intervals must be 1 11 12 1 12 14 1 14 http://vustudents.ning.com/ 1 17 Find the value of y'(1) from given forward difference table 2 18 Y Ay Ay ² 19 Find the value of y'(1) from given forward difference table 2 10 I I 12 14 I 14 I I 15 Find the value of y'(1) from given forward difference table 2 16 I I I 17 I I I 18 I I I		Х							
14For Simpson's 1/3 rule no.of intervals must be1• 1• 3• 5• 5• 815For Simpson's 1/3 rule valid no.of intervals are1• 1• 3• 5• 816For Simpson's 3/8 rule no.of intervals must be1• 1• 3• 5• 816For Simpson's 3/8 rule no.of intervals must be1• 1• 10• 11• 12• 14• 14• 12• 15• 14• 16• 14• 17• 14• 18• 14• 19• 14• 19• 14• 19• 14• 10• 14• 11• 14• 12• 14• 13• 14• 14• 14 <tr< td=""><td></td><td>у</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		у							
$ \begin{array}{c c c c c c } & 1 & & & & & & & & & & & & & & & & & $	14	For Simpson's 1/3 rule no.of intervals must be						1	
$ \begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$		• 1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 3							
• 815For Simpson's 1/3 rule valid no.of intervals are1• 13• 5•• 8116For Simpson's 3/8 rule no.of intervals must be1• 10•11• 12•• 1412• 1414http://vustudents.ning.com/117Find the value of y'(1) from given forward difference table217Image: Simple constrained constrai		• 5							
15For Simpson's 1/3 rule valid no.of intervals are1• 13• 5• 816For Simpson's 3/8 rule no.of intervals must be1• 10• 11• 12• 14• 14http://vustudents.ning.com/117Find the value of y'(1) from given forward difference table2xy Δy^2 Δy^3 II <tdi< td=""><</tdi<>		• 8							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	For Simpson's 1/3 rule valid no.of intervals are						1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• 1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 3							
• 816For Simpson's 3/8 rule no.of intervals must be • 10 • 11 • 12 • 14 http://vustudents.ning.com/117Find the value of y'(1) from given forward difference table X2XY Δy^2 Δy^3 II <td></td> <td>• 5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		• 5							
16For Simpson's 3/8 rule no.of intervals must be1 \cdot 1011 \cdot 12 \cdot 14http://vustudents.ning.com/117Find the value of y'(1) from given forward difference table2 x y Δy Δy^2 Δy^3 Δy^2 Δy^3 \Box		• 8	- /						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	For Simpson's	3/8 rule	no.of inte	ervals n	nust be			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 10							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 11							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		• 12							
17 Find the value of y'(1) from given forward difference table $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		• 14 http://www.studom	to ning (om/					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	Find the value	$\frac{18.11119.0}{1000}$	from give	n forw	ard difference	tabla		2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/		$\frac{\Delta v}{\Delta v}$	Δu^2	$\frac{11101}{4}$		laule		2
		л у	Δу	Δy	Δy				

Numerical analysis mth603 paper Numerical Analysis numerical paper 2009 The paper was very easy. The mcq's were really easy. Most of the mcq's were from the last 5 lecture. and from jacobi's method and other's. then the logical mcq's like s inverse * s = Iit was repeated twice. one 5 mark question was from newton's rapson method one 10 mark question was from lecture 11 page 69 example best of luck Тор

FINALTERM EXAMINATION Spring 2010 MTH603- Numerical Analysis (Session - 2)

Ref No: 1508683 Time: 90 min Marks: 60

Muller's

Question No: 1 (Marks: 1) - Please choose one Symbol used for forward differences is \triangleright ∇ $\blacktriangleright \Delta$ $\blacktriangleright \delta$ $\blacktriangleright \mu$ Question No: 2 (Marks: 1) - Please choose one _ The relationship between central difference operator and the shift operator is given by $\delta = E - E^{-1}$ $\bullet \delta = E + E^{-1}$ $\delta = E^{\frac{1}{2}} + E^{-\frac{1}{2}}$ $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$ Question No: 3 (Marks: 1) - Please choose one method requires -----starting points ▶ 1 ▶ 2 ▶ 3 ▶ 4 Question No: 4 (Marks: 1) - Please choose one _ If S is an identity matrix, then $\blacktriangleright S^{-1} = S$ \triangleright $S^t = S$ ▶ All are true $S^{-1} = S^t$

Question No: 5 (Marks: 1) - Please choose one

If we retain r+1 terms in Newton's forward difference formula, we obtain a polynomial of degree ---- agreeing with

Share your feedback/comments at pak.nchd@gmail.com to improve file|| Back to TOP || File Version v11.02.02 published for Final Term

P in Newton's

Octal

Newton's

Given the

 y_x at $x_{0,}x_1,...,x_r$

- ► r+2
- ▶ r+1
- ► r
- ► r-1

Question No: 6 (Marks: 1) - Please choose one

forward difference formula is defined as

 $p = \left(\frac{x - x_0}{h}\right)$ $p = \left(\frac{x + x_0}{h}\right)$ $p = \left(\frac{x + x_n}{h}\right)$ $p = \left(\frac{x - x_n}{h}\right)$

Question No: 7 (Marks: 1) - Please choose one

number system has the base ------

- ▶ 2
- ▶ 8
- ▶ 10
- ▶ 16

Question No: 8 (Marks: 1) - Please choose one

divided difference interpolation formula is used when the values of the independent variable are

- ► Equally spaced
- Not equally spaced
- Constant
- None of the above

Question No: 9 (Marks: 1) - Please choose one

following data

x	0	1	2	4
f(x)	1	1	2	5

Value of $f^{(2,4)}$ is

- ▶ 1.5
- ▶ 3
- ▶ 2
- ▶ 1

Question No: 10 (Marks: 1) - Please choose one

_____ If y(x) is

_____ Let I denotes

approximated by a polynomial $p_n(x)$ of degree n then the error is given by

- $\varepsilon(x) = y(x) + P_n(x)$ $\varepsilon(x) = y(x) - P_n(x)$ $\varepsilon(x) = P_n(x) - y(x)$
- $\mathbf{\mathcal{E}}(x) = y(x) \times P_n(x)$

Question No: 11 (Marks: 1) - Please choose one

the closed interval spanned by $x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, \overline{x}$. Then F(x) vanishes -----times in the interval I.

- ▶ n-1
- ▶ n+2
- ▶ n
- ▶ n+1

Question No: 12 (Marks: 1) - Please choose one

Differential

operator in terms of forward difference operator is given by

$$D = \frac{1}{h} (\Delta + \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} + \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} + ...)$$

$$D = \frac{1}{h} (\Delta + \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} + \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} + ...)$$

$$D = \frac{1}{h} (\Delta - \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} - \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} - ...)$$

$$D = \frac{1}{h} (\Delta - \frac{\Delta^2}{2!} + \frac{\Delta^3}{3!} - \frac{\Delta^4}{4!} + \frac{\Delta^5}{5!} - ...)$$

Question No: 13 (Marks: 1) - Please choose one

Finding the

first derivative of f(x) at x = 0.4 from the following table:

x	0.1	0.2	0.3	0.4
f(x)	1.10517	1.22140	1.34986	1.49182

Differential operator in terms of ------will be used.

- ► Forward difference operator
- Backward difference operator
- Central difference operator
- None of the given choices

Question No: 14 (Marks: 1) - Please choose one

For the given table of values

x	0.1	0.2	0.3	0.4	0.5	0.6
f(x)	0.425	0.475	0.400	0.452	0.525	0.575

 $f^{\prime}(0.1)$, using two-point equation will be calculated as.....

- ► -0.5
- ▶ 0.5
- ▶ 0.75
- ► -0.75

Question No: 15 (Marks: 1) - Please choose one

In Simpson's

1/3 rule, f(x) is of the form

- $\blacktriangleright ax+b$
- $ax^2 + bx + c$
- $ax^3 + bx^2 + cx + d$
- $ax^4 + bx^3 + cx^2 + dx + e$

Question No: 16 (Marks: 1) - Please choose one

 $I = \int_{a}^{b} f(x) dx$ integrating $A = \int_{a}^{b} f(x) dx$, h, width of the interval, is found by the formula-----.

Share your feedback/comments at pak.nchd@gmail.com to improve file || Back to TOP || File Version v11.02.02 published for Final Term

None of the given choices

Question No: 17 (Marks: 1) - Please choose one

Simpson's 1/3 rule, valid number of intervals are.....

Question No: 18 (Marks: 1) - Please choose one

For the given

— To apply

To apply

table of values								
x	02	0.3	0.4	0.5	0.6	0.7		
f(x)	0.425	0.475	0.400	0.452	0.525	0.575		

 $f^{\prime\prime}(0.2)$, using three-point equation will be calculated as

- ▶ 17.5
- ▶ 12.5
- ▶ 7.5
- ► -12.5

Question No: 19 (Marks: 1) - Please choose one

Simpson's 1/3 rule, the number of intervals in the following must be

- ▶ 2▶ 3
- ► 5
- ▶ 7

Question No: 20 (Marks: 1) - Please choose one

Simpson's 3/8 rule, the number of intervals in the following must be

- ▶ 10
- ► 10
- ▶ 12
- ▶ 13

Question No: 21 (Marks: 1) - Please choose one

the given equation lies between a and b, then the first approximation to the root of the equation by bisection method is

Question No: 22 (Marks: 1) - Please choose one

.....lies in the category of iterative method.

- Bisection Method
- Regula Falsi Method
- Secant Method
- None of the given choices

Question No: 23 (Marks: 1) - Please choose one

____ For the

equation $x^3 + 3x - 1 = 0$, the root of the equation lies in the interval.....

- ► (1, 3)
- ► (1, 2)
- ► (0, 1)
- ► (1, 2)

Question No: 24 (Marks: 1) - Please choose one

Rate of change

of any quantity with respect to another can be modeled by

- An ordinary differential equation
- ► A partial differential equation
- A polynomial equation
- None of the given choices

Question No: 25 (Marks: 1) - Please choose one

lf $\frac{dy}{dx} = f(x, y)$ Then the integral of this equation is a curve in None of the given choices ► xt-plane yt-plane xy-plane Question No: 26 (Marks: 1) - Please choose one In solving the differential equation y' = x + y; y(0.1) = 1.1h = 0.1, By Euler's method y(0.2) is calculated as ▶ 1.44 ▶ 1.11 ▶ 1.22 ▶ 1.33 Question No: 27 (Marks: 1) - Please choose one In second order Runge-Kutta method k_1 is given by $\mathbf{k}_1 = hf(x_n, y_n)$ $\mathbf{k}_1 = 2hf(x_n, y_n)$ $k_1 = 3hf(x_n, y_n)$ None of the given choices

Question No: 28 (Marks: 1) - Please choose one

In fourth order

Runge-Kutta method, k_2 is given by

 $k_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2})$ $k_{2} = hf(x_{n} + \frac{h}{3}, y_{n} + \frac{k_{1}}{3})$ $k_{2} = hf(x_{n} - \frac{h}{3}, y_{n} - \frac{k_{1}}{3})$ $k_{2} = hf(x_{n} - \frac{h}{2}, y_{n} - \frac{k_{1}}{2})$

Question No: 29 (Marks: 1) - Please choose one
 In fourth order

 Runge-Kutta method,
$$k_4$$
 is given by
 In fourth order

 k, $s_1 = hf(x_1 + 2h, y_2 + 2k_1)$
 $k_2 = hf(x_1 - h, y_2 - k_2)$

 k, $k_2 = hf(x_1 + h, y_2 + k_1)$
 None of the given choices

 Question No: 30 (Marks: 1) - Please choose one
 Adam-Moulton

 P-C method is derived by employing
 Adam-Moulton

 P-C method is derived by employing
 Newton's backward difference interpolation formula

 None of the given choices
 f

 Question No: 31 (Marks: 2)
 If

 $F(h) = 256.2354$ and $F(\frac{h}{2}) = 257.1379$, then find $F(\frac{h}{2})$ using Richardson's extrapolation limit.

 Question No: 32 (Marks: 2)
 Evaluate the

 integral
 $\frac{f}{2}$

 Question No: 33 (Marks: 2)
 Write a general

 Take h= $\frac{\pi}{4}$
 Write a general

 Question No: 33 (Marks: 3)
 Evaluate the

 integral
 Evaluate the

$\int x^2 dx$

Using Trapezoidal rule Take h=1

Question No: 35 (Marks: 3)

integral

Using Simpson's 3/8 rule Take h=1

Question No: 36 (Marks: 3)

for finding the value of k_3 in Fourth-order R-K method.

 $\int (\log x + 2) dx$

Question No: 37 (Marks: 5)

forward difference table from the following data.

x	0.0	0.1	0.2	0.3	0.4
f(x)	1	0.9048	0.8187	0.7408	0.6703

Question No: 38 (Marks: 5)

integral

Using Simpson's 3/8 rule

Take h=1

Question No: 39 (Marks: 5)

Kutta Method of order four to find the values of for the initial value problem k_{1}, k_{2}, k_{3} and k_{4}

 $\int_{a}^{b} (x^2 + x) dx$

Use Runge-

Evaluate the

Evaluate the

Find Newton's

Write a formula

Page No.170

$$y' = \frac{1}{2}(2x^3 + y), y(1) = 2$$
 taking $h = 0.1$

Тор

Set-12

Set-13
