FINALTERM EXAMINATION Spring 2010 MTH603- Numerical Analysis (Session - 2)

Question No: 1 (Marks: 1) - Please choose one
Symbol used for forward differences is
∇

- Δ
$-\delta$
${ }^{\mu}$

Question No: 2 (Marks: 1) - Please choose one
The relationship between central difference operator and the shift operator is given by

$$
\begin{aligned}
& \delta=\mathrm{E}-\mathrm{E}^{-1} \\
& \delta=\mathrm{E}+\mathrm{E}^{-1} \\
& \delta=\mathrm{E}^{2}+\mathrm{E}^{-\frac{1}{2}} \\
& \boldsymbol{\delta}=\mathrm{E}^{2}-\mathrm{E}^{-\frac{1}{2}}
\end{aligned}
$$

Question No: 3 (Marks: 1) - Please choose one
Muller's method requires --------starting points

- 1
- 2
- 3
- 4

Question No: 4 (Marks: 1) - Please choose one

If S is an identity matrix, then

- $S^{-1}=S$
- $S^{t}=S$
- All aretrue
- $S^{-1}=S^{t}$

Question No: 5 (Marks: 1) - Please choose one
If we retain $\mathrm{r}+1$ terms in Newton's forward difference formula, we obtain a polynomial of degree ---- agreeing with ${ }^{y_{x}}$ at ${ }^{x_{0}, x_{1}, \ldots, x_{r}}$

- $\mathrm{r}+1$
- r
- $\mathrm{r}-1$

Question No: 6 (Marks: 1) - Please choose one
P in Newton's forward difference formula is defined as

$$
p=\left(\frac{x-x_{0}}{h}\right)
$$

$$
p=\left(\frac{x+x_{0}}{h}\right)
$$

$$
p=\left(\frac{x+x_{n}}{h}\right)
$$

$$
p=\left(\frac{x-x_{n}}{h}\right)
$$

Question No: 7 (Marks: 1) - Please choose one
Octal number system has the base

- 2
- 8
- 10
- 16

Question No: 8 (Marks: 1) - Please choose one
Newton's divided difference interpolation formula is used when the values of the independent variable are

Equally spaced

- Not equally spaced
- Constant
- None of the above

Question No: 9 (Marks: 1) - Please choose one
Given the following data

x	0	1	2	4
$f(x)$	1	1	2	5

Value of $f(2,4)$ is

- 1.5
- 3
- 2
- 1

Question No: 10 (Marks: 1) - Please choose one
If ${ }^{y(x)}$ is approximated by a polynomial ${ }^{p_{n}(x)}$ of degree n then the error is given by

$$
\begin{aligned}
& \varepsilon(x)=y(x)+P_{n}(x) \\
& \varepsilon(x)=y(x)-P_{n}(x) \\
& \varepsilon(x)=P_{n}(x)-y(x) \\
& \varepsilon(x)=y(x) \times P_{n}(x)
\end{aligned}
$$

Question No: 11 (Marks: 1) - Please choose one
Let I denotes the closed interval spanned by $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, \bar{x}$
$F(x)$ vanishes ------times in the interval I.

- $\mathrm{n}-1$
- $\mathrm{n}+2$
- n
- $\mathrm{n}+1$

Question No: 12 (Marks: 1) - Please choose one
Differential operator in terms of forward difference operator is given by

$$
D=\frac{1}{h}\left(\Delta+\frac{\Delta^{2}}{2!}+\frac{\Delta^{3}}{3!}+\frac{\Delta^{4}}{4!}+\frac{\Delta^{5}}{5!}+\ldots\right)
$$

$$
D=\frac{1}{h}\left(\Delta+\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}+\frac{\Delta^{4}}{4}+\frac{\Delta^{5}}{5}+\ldots\right)
$$

$$
D=\frac{1}{h}\left(\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4}+\frac{\Delta^{5}}{5}-\ldots\right)
$$

$$
D=\frac{1}{h}\left(\Delta-\frac{\Delta^{2}}{2!}+\frac{\Delta^{3}}{3!}-\frac{\Delta^{4}}{4!}+\frac{\Delta^{5}}{5!}-\ldots\right)
$$

Question No: 13 (Marks: 1) - Please choose one

Finding the first derivative of ${ }^{f(x)}$ at ${ }^{x}=0.4$ from the following table:

x	0.1	0.2	0.3	0.4
$f(x)$	1.10517	1.22140	1.34986	1.49182

Differential operator in terms of \qquad

- Forward difference operator
- Backward difference operator
- Central difference operator
- None of the given choices

Question No: 14 (Marks: 1) - Please choose one
For the given table of values

x	0.1	0.2	0.3	0.4	0.5	0.6
$f(x)$	0.425	0.475	0.400	0.452	0.525	0.575

$f^{\prime}(0.1)$
, using two-point equation will be calculated as.............
-0.5

- 0.5
- 0.75
- 0.75

Question No: 15 (Marks: 1) - Please choose one

In Simpson's $1 / 3$ rule, $f(x)$ is of the form

- $a x+b$
- $a x^{2}+b x+c$
- $a x^{3}+b x^{2}+c x+d$
- $a x^{4}+b x^{3}+c x^{2}+d x+e$

Question No: 16 (Marks: 1) - Please choose one

$$
I=\int_{a}^{b} f(x) d x
$$

While integrating
, h, width of the interval, is found by the formula--

$$
a-b
$$

n

- None of the given choices

Question No: 17 (Marks: 1) - Please choose one
To apply Simpson's 1/3 rule, valid number of intervals are.....

- 7
- 8
- 5
- 3

Question No: 18 (Marks: 1) - Please choose one
For the given table of values

x	02	0.3	0.4	0.5	0.6	0.7
$f(x)$	0.425	0.475	0.400	0.452	0.525	0.575

$f^{\prime \prime}(0.2)$
, using three-point equation will be calculated as

- 17.5
- 12.5
- 7.5
- -12.5

Question No: 19 (Marks: 1) - Please choose one
To apply Simpson's 1/3 rule, the number of intervals in the following must be
-2

- 3
- 5
- 7

Question No: 20 (Marks: 1) - Please choose one
To apply Simpson's $3 / 8$ rule, the number of intervals in the following must be

- 10
- 11
- 12
- 13

Question No: 21 (Marks: 1) - Please choose one
If the root of the given equation lies between a and b, then the first approximation to the root of the equation by bisection method is

$$
\begin{aligned}
& \frac{(a+b)}{2} \\
& \frac{(a-b)}{2} \\
& \frac{(b-a)}{2} \\
& \text { None of the given choices }
\end{aligned}
$$

- Bisection Method
- Regula Falsi Method
- Secant Method
- None of the given choices

Question No: 23 (Marks: 1) - Please choose one
For the equation $x^{3}+3 x-1=0$, the root of the equation lies in the interval......

- $(1,3)$
- $(1,2)$
- $(0,1)$
- $(1,2)$

Question No: 24 (Marks: 1) - Please choose one
Rate of change of any quantity with respect to another can be modeled by

- An ordinary differential equation
- A partial differential equation
- A polynomial equation
- None of the given choices

Question No: 25 (Marks: 1) - Please choose one
If
$\frac{d y}{d x}=f(x, y)$
Then the integral of this equation is a curve in

- None of the given choices
- xt-plane
- yt-plane
- xy-plane

Question No: 26 (Marks: 1) - Please choose one
In solving the differential equation

$$
y^{\prime}=x+y ; y(0.1)=1.1
$$

$h=0.1$, By Euler's method ${ }^{y(0.2)}$ is calculated as

- 1.44
- 1.11
- 1.22
- 1.33

Question No: 27 (Marks: 1) - Please choose one
In second order Runge-Kutta method
k_{1}
is given by

- $k_{1}=h f\left(x_{n}, y_{n}\right)$
$k_{1}=2 h f\left(x_{n}, y_{n}\right)$
$k_{1}=3 h f\left(x_{n}, y_{n}\right)$
- None of the given choices

Question No: 28 (Marks: 1) - Please choose one

In fourth order Runge-Kutta method, ${ }^{k_{2}}$ is given by

$$
k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{1}}{2}\right)
$$

$$
k_{2}=h f\left(x_{n}+\frac{h}{3}, y_{n}+\frac{k_{1}}{3}\right)
$$

$$
k_{2}=h f\left(x_{n}-\frac{h}{3}, y_{n}-\frac{k_{1}}{3}\right)
$$

$$
k_{2}=h f\left(x_{n}-\frac{h}{2}, y_{n}-\frac{k_{1}}{2}\right)
$$

Question No: 29 (Marks: 1) - Please choose one In fourth order Runge-Kutta method, ${ }^{k_{4}}$ is given by

$$
\begin{aligned}
& k_{3}=h f\left(x_{n}+2 h, y_{n}+2 k_{3}\right) \\
& k_{3}=h f\left(x_{n}-h, y_{n}-k_{3}\right) \\
& k_{3}=h f\left(x_{n}+h, y_{n}+k_{3}\right)
\end{aligned}
$$

- None of the given choices

Question No: 30 (Marks: 1) - Please choose one
Adam-Moulton P-C method is derived by employing

- Newton's backward difference interpolation formula
- Newton's forward difference interpolation formula
- Newton's divided difference interpolation formula
- None of the given choices

Question No: 31 (Marks: 2)
If $F(h)=256.2354$ and $F\left(\frac{h}{2}\right)=257.1379 \quad$, then find $F_{1}\binom{h}{2}$ using Richardson's
extrapolation limit.

Question No: 32 (Marks: 2)

Evaluate the integral

$$
\int_{0}^{\frac{\pi}{2}}(\cos x+2) d x
$$

Using Simpson's 3/8 rule
π
4
Take $\mathrm{h}=$

Question No: 33 (Marks: 2)
Write a general formula for Modified Euler's method of solving the given differential equation.

Question No: 34 (Marks: 3)
Evaluate the integral

$$
\int_{0}^{4} x^{2} d x
$$

Using Trapezoidal rule
Take h=1

Question No: 35 (Marks: 3)

Evaluate the integral

$$
\int_{3}^{5}(\log x+2) d x
$$

Using Simpson's $3 / 8$ rule
Take $\mathrm{h}=1$

Question No: 36 (Marks: 3)
Write a formula for finding the value of ${ }^{k_{3}}$ in Fourth-order R-K method.
Question No: 37 (Marks: 5)
Find Newton's forward difference table from the following data.

x	0.0	0.1	0.2	0.3	0.4
$f(x)$	1	0.9048	0.8187	0.7408	0.6703

Question No: 38 (Marks: 5)
Evaluate the integral

$$
\int_{0}^{3}\left(x^{2}+x\right) d x
$$

Using Simpson's 3/8 rule
Take $\mathrm{h}=1$

Question No: 39 (Marks: 5)
Use Runge-Kutta Method of order four to find the values of k_{1}, k_{2}, k_{3} and k_{4} for the initial value problem

$$
y^{\prime}=\frac{1}{2}\left(2 x^{3}+y\right), y(1)=2
$$

$$
\text { taking } h=0.1
$$

